Galois Connection for Hyperclones
暂无分享,去创建一个
[1] Ivo G. Rosenberg. Multiple-valued hyperstructures , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).
[2] Jovanka Pantovic,et al. On the partial hyperclone lattice , 2005, 35th International Symposium on Multiple-Valued Logic (ISMVL'05).
[3] Boris A. Romov. Hyperclones on a finite set , 1997, Proceedings 1997 27th International Symposium on Multiple- Valued Logic.
[4] Boris A. Romov. Partial hyperclones on a finite set , 2002, Proceedings 32nd IEEE International Symposium on Multiple-Valued Logic.
[5] Jovanka Pantovic,et al. Maximal Hyperclones on E2 as Hypercores , 2009, J. Multiple Valued Log. Soft Comput..
[6] Jovanka Pantovic,et al. Three Classes of Maximal Hyperclones , 2012, J. Multiple Valued Log. Soft Comput..
[7] Ágnes Szendrei,et al. Clones in universal algebra , 1986 .
[8] Reinhard Pöschel,et al. Funktionen- und Relationenalgebren , 1979 .
[9] Jovanka Pantovic,et al. Hyperclones Determined by Total-Parts of Hyper-relations , 2009, 2009 39th International Symposium on Multiple-Valued Logic.
[10] I.G. Rosenberg. An algebraic approach to hyperalgebras , 1996, Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96).
[11] Jovanka Pantovic,et al. Minimal partial hyperclones on a two-element set , 2004, Proceedings. 34th International Symposium on Multiple-Valued Logic.
[12] L. A. Kaluzhnin,et al. Galois theory for Post algebras. II , 1969 .
[13] D. Lau,et al. Function algebras on finite sets : a basic course on many-valued logic and clone theory , 2006 .