Obstacle Avoidance Strategy using Onboard Stereo Vision on a Flapping Wing MAV

The development of autonomous lightweight MAVs, capable of navigating in unknown indoor environments, is one of the major challenges in robotics. The complexity of this challenge comes from constraints on weight and power consumption of onboard sensing and processing devices. In this paper, we propose the “Droplet” strategy, an avoidance strategy based on stereo vision inputs that outperforms reactive avoidance strategies by allowing constant speed maneuvers while being computationally extremely efficient, and which does not need to store previous images or maps. The strategy deals with nonholonomic motion constraints of most fixed and flapping wing platforms, and with the limited field-of-view of stereo camera systems. It guarantees obstacle-free flight in the absence of sensor and motor noise. We first analyze the strategy in simulation, and then show its robustness in real-world conditions by implementing it on a 20-gram flapping wing MAV.

[1]  Sven Behnke,et al.  Autonomous Navigation for Micro Aerial Vehicles in Complex GNSS-denied Environments , 2016, J. Intell. Robotic Syst..

[2]  Andrew M. Hyslop,et al.  Autonomous Navigation in Three-Dimensional Urban Environments Using Wide-Field Integration of Optic Flow , 2010 .

[3]  Henry Won,et al.  Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle , 2012 .

[4]  Ronald S. Fearing,et al.  Flight control for target seeking by 13 gram ornithopter , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Nicholas Roy,et al.  RANGE - robust autonomous navigation in GPS-denied environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[6]  Ronald S. Fearing,et al.  Flight forces and altitude regulation of 12 gram I-Bird , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[7]  Russ Tedrake,et al.  Pushbroom stereo for high-speed navigation in cluttered environments , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Wolfram Burgard,et al.  A Fully Autonomous Indoor Quadrotor , 2012, IEEE Transactions on Robotics.

[9]  Paul R. Cohen,et al.  Empirical methods for artificial intelligence , 1995, IEEE Expert.

[10]  Dario Floreano,et al.  Vision-based control of near-obstacle flight , 2009, Auton. Robots.

[11]  K. Madhava Krishna,et al.  Autonomous navigation of generic monocular quadcopter in natural environment , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[12]  James Sean Humbert,et al.  Erratum to: Implementation of wide-field integration of optic flow for autonomous quadrotor navigation , 2009, Auton. Robots.

[13]  Soon-Jo Chung,et al.  Motion primitives and 3D path planning for fast flight through a forest , 2015, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[15]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[16]  B. Remes,et al.  Design, Aerodynamics, and Vision-Based Control of the DelFly , 2009 .

[17]  Guido C. H. E. de Croon,et al.  Autonomous flight of a 20-gram Flapping Wing MAV with a 4-gram onboard stereo vision system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Ronald S. Fearing,et al.  Cooperative control and modeling for narrow passage traversal with an ornithopter MAV and lightweight ground station , 2013, AAMAS.

[19]  Martial Hebert,et al.  Vision and Learning for Deliberative Monocular Cluttered Flight , 2014, FSR.

[20]  Larry H. Matthies,et al.  Stereo vision-based obstacle avoidance for micro air vehicles using disparity space , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Karthik Dantu,et al.  Autonomous MAV guidance with a lightweight omnidirectional vision sensor , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[22]  Davide Scaramuzza,et al.  REMODE: Probabilistic, monocular dense reconstruction in real time , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Gaurav S. Sukhatme,et al.  Combined optic-flow and stereo-based navigation of urban canyons for a UAV , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  S.J.J. Smith,et al.  Empirical Methods for Artificial Intelligence , 1995 .

[25]  Robert J. Wood,et al.  Altitude feedback control of a flapping-wing microrobot using an on-board biologically inspired optical flow sensor , 2012, 2012 IEEE International Conference on Robotics and Automation.

[26]  Xiaoyan Hu,et al.  Evaluation of stereo confidence indoors and outdoors , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Dario Floreano,et al.  Optic Flow to Steer and Avoid Collisions in 3D , 2010, Flying Insects and Robots.

[28]  G C H E de Croon,et al.  Design, aerodynamics and autonomy of the DelFly , 2012, Bioinspiration & biomimetics.

[29]  James Sean Humbert,et al.  Implementation of wide-field integration of optic flow for autonomous quadrotor navigation , 2009, Auton. Robots.

[30]  Martial Hebert,et al.  Learning monocular reactive UAV control in cluttered natural environments , 2012, 2013 IEEE International Conference on Robotics and Automation.

[31]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[32]  RoyNicholas,et al.  RANGE–Robust autonomous navigation in GPS-denied environments , 2011 .

[33]  Daniel Cremers,et al.  Visual-Inertial Navigation for a Camera-Equipped 25g Nano-Quadrotor , 2014 .

[34]  Robert J. Wood,et al.  Pitch and yaw control of a robotic insect using an onboard magnetometer , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[35]  S H Lin,et al.  Altitude control of flapping-wing MAV using vision-based navigation , 2010, Proceedings of the 2010 American Control Conference.

[36]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[37]  Satyandra K. Gupta,et al.  Autonomous Loitering Control for a Flapping Wing Miniature Aerial Vehicle With Independent Wing Control , 2014 .

[38]  Dario Floreano,et al.  A 10-gram vision-based flying robot , 2007, Adv. Robotics.

[39]  Albert S. Huang,et al.  Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera , 2011, ISRR.

[40]  Vijay Kumar,et al.  Incremental micro-UAV motion replanning for exploring unknown environments , 2013, 2013 IEEE International Conference on Robotics and Automation.

[41]  Marc Pollefeys,et al.  Vision-based autonomous mapping and exploration using a quadrotor MAV , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Dario Floreano,et al.  Autonomous flight at low altitude with vision-based collision avoidance and GPS-based path following , 2010, 2010 IEEE International Conference on Robotics and Automation.

[43]  Guido C. H. E. de Croon,et al.  Stereo Vision Based Obstacle Avoidance on Flapping Wing MAVs , 2013 .

[44]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[45]  H. K. Hsu,et al.  Using Stereo Visionto Acquire the Flight Information of Flapping-Wing MAVs* , 2012 .

[46]  Marc Pollefeys,et al.  Real-time 3D navigation for autonomous vision-guided MAVs , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[47]  Arindam Dhar Autonomous Navigation for Micro Aerial Vehicles , 2017 .

[48]  Robert J. Wood,et al.  Using a MEMS gyroscope to stabilize the attitude of a fly-sized hovering robot , 2014 .

[49]  A ParanjapeAditya,et al.  Motion primitives and 3D path planning for fast flight through a forest , 2015 .

[50]  Maxim Likhachev,et al.  Path planning for non-circular micro aerial vehicles in constrained environments , 2013, 2013 IEEE International Conference on Robotics and Automation.