Pattern Avoidance in Partial Permutations

Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A partial permutation of length $n$ with $k$ holes is a sequence of symbols $\pi=\pi_1\pi_2\dotsb\pi_n$ in which each of the symbols from the set $\{1,2,\dotsc,n-k\}$ appears exactly once, while the remaining $k$ symbols of $\pi$ are "holes". We introduce pattern-avoidance in partial permutations and prove that most of the previous results on Wilf equivalence of permutation patterns can be extended to partial permutations with an arbitrary number of holes. We also show that Baxter permutations of a given length $k$ correspond to a Wilf-type equivalence class with respect to partial permutations with $(k-2)$ holes. Lastly, we enumerate the partial permutations of length $n$ with $k$ holes avoiding a given pattern of length at most four, for each $n\ge k\ge 1$.

[1]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[2]  Tero Harju,et al.  Overlap-freeness in infinite partial words , 2009, Theor. Comput. Sci..

[3]  Narad Rampersad,et al.  On the Complexity of Deciding Avoidability of Sets of Partial Words , 2009, Developments in Language Theory.

[4]  Julian West,et al.  The Permutations 123p4…pm and 321p4…pm are Wilf-Equivalent , 2000, Graphs Comb..

[5]  Jean Berstel,et al.  Partial Words and a Theorem of Fine and Wilf , 1999, Theor. Comput. Sci..

[6]  Julian West,et al.  Wilf-equivalence for singleton classes , 2007, Adv. Appl. Math..

[7]  Arseny M. Shur,et al.  On the Periods of Partial Words , 2001, MFCS.

[8]  Sergey Kitaev,et al.  Classification of bijections between 321- and 132-avoiding permutations , 2008, 0805.1325.

[9]  Nikola Ruskuc,et al.  The Insertion Encoding of Permutations , 2005, Electron. J. Comb..

[10]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[11]  Anna de Mier k-noncrossing and k-nonnesting graphs and fillings of ferrers diagrams , 2007, Comb..

[12]  Tero Harju,et al.  Square-free partial words , 2008, Inf. Process. Lett..

[13]  Francine Blanchet-Sadri Algorithmic Combinatorics on Partial Words , 2012, Int. J. Found. Comput. Sci..

[14]  Svante Linusson Extended pattern avoidance , 2002, Discret. Math..

[15]  Nicolas Bonichon,et al.  Baxter permutations and plane bipolar orientations , 2008, Electron. Notes Discret. Math..

[16]  Josef Cibulka,et al.  On constants in the Füredi-Hajnal and the Stanley-Wilf conjecture , 2009, J. Comb. Theory, Ser. A.

[17]  Serge Dulucq,et al.  DISCRETE MATHEMATICS Baxter permutat ions 1 , 2006 .

[18]  Zoltán Fülöp,et al.  Developments in Language Theory , 2003, Lecture Notes in Computer Science.

[19]  G. Winskel What Is Discrete Mathematics , 2007 .

[20]  Elsevier Sdol,et al.  Advances in Applied Mathematics , 2009 .

[21]  G. Baxter,et al.  On fixed points of the composite of commuting functions , 1964 .

[22]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[23]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[24]  C.L Mallows,et al.  Baxter Permutations Rise Again , 1979, J. Comb. Theory, Ser. A.

[25]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[26]  Francine Blanchet-Sadri Algorithmic Combinatorics on Partial Words (Discrete Mathematics and Its Applications) , 2007 .

[27]  Christian Krattenthaler Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes , 2006, Adv. Appl. Math..

[28]  Francine Blanchet-Sadri,et al.  Unavoidable Sets of Partial Words , 2009, Theory of Computing Systems.

[29]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[30]  Martin Klazar,et al.  On Growth Rates of Closed Permutation Classes , 2003, Electron. J. Comb..

[31]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[32]  Eric Babson,et al.  Generalized permutation patterns and a classification of the Mahonian statistics , 2000 .

[33]  Amitai Regev,et al.  Asymptotic values for degrees associated with strips of young diagrams , 1981 .

[34]  Serge Dulucq,et al.  Stack words, standard tableaux and Baxter permutations , 1996, Discret. Math..

[35]  Julian West,et al.  A New Class of Wilf-Equivalent Permutations , 2001 .

[36]  Stefan Felsner,et al.  Bijections for Baxter families and related objects , 2008, J. Comb. Theory A.

[37]  Vít Jelínek Dyck paths and pattern-avoiding matchings , 2007, Eur. J. Comb..

[38]  Peter Leupold,et al.  Partial Words for DNA Coding , 2004, DNA.