Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing.

We report a two-dimensional (2D) tunable liquid gradient refractive index (L-GRIN) lens for variable focusing of light in the out-of-plane direction. This lens focuses a light beam through a liquid medium with a 2D hyperbolic secant (HS) refractive index gradient. The refractive index gradient is established in a microfluidic chamber through the diffusion between two fluids with different refractive indices, i.e. CaCl(2) solution and deionized (DI) water. The 2D HS refractive index profile and subsequently the focal length of the L-GRIN lens can be tuned by changing the ratio of the flow rates of the CaCl(2) solution and DI water. The focusing effect is experimentally characterized through side-view and top-view image analysis, and the experimental data match well with the results from ray-tracing optical simulations. Advantages of the 2D L-GRIN lens include simple device fabrication procedure, low fluid consumption rate, convenient lens-tuning mechanism, and compatibility with existing microfluidic devices. We expect that with further optimizations, this 2D L-GRIN lens can be used in many optics-based lab-on-a-chip applications.

[1]  Changhuei Yang,et al.  Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate. , 2010, Lab on a chip.

[2]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[3]  Tony Jun Huang,et al.  "Microfluidic drifting"--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. , 2007, Lab on a chip.

[4]  Ki-Hun Jeong,et al.  Tunable microdoublet lens array , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[5]  George M. Whitesides,et al.  Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels , 2006 .

[6]  Tony Jun Huang,et al.  Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index. , 2009, Optics express.

[7]  Holger Schmidt,et al.  Optofluidic waveguides: I. Concepts and implementations , 2008, Microfluidics and nanofluidics.

[8]  Shih-Kang Fan,et al.  Asymmetric electrowetting--moving droplets by a square wave. , 2007, Lab on a chip.

[9]  Victor M Ugaz,et al.  Multivortex micromixing. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Demetri Psaltis,et al.  Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip. , 2006, Lab on a chip.

[11]  D. Deamer,et al.  Loss-based optical trap for on-chip particle analysis. , 2009, Lab on a chip.

[12]  M. Lipson,et al.  Optofluidic trapping and transport on solid core waveguides within a microfluidic device. , 2007, Optics express.

[13]  A. Asundi,et al.  Modelling and optimization of micro optofluidic lenses. , 2009, Lab on a chip.

[14]  A. Hawkins,et al.  Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip. , 2010, Lab on a chip.

[15]  Jinjie Shi,et al.  Tunable optofluidic microlens through active pressure control of an air–liquid interface , 2010 .

[16]  Yoshiko Yamaguchi,et al.  3-D Simulation and Visualization of Laminar Flow in a Microchannel with Hair-Pin Curves , 2004 .

[17]  T. Fukuda,et al.  On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. , 2005, Lab on a chip.

[18]  D. Erickson,et al.  Nanoscale optofluidic sensor arrays. , 2008, Optics express.

[19]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[20]  G. Whitesides,et al.  Dynamic control of liquid-core/liquid-cladding optical waveguides , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[21]  Francesco De Angelis,et al.  Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation , 2007 .

[22]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[23]  R. Fair,et al.  Electrowetting-based actuation of liquid droplets for microfluidic applications , 2000 .

[24]  Sindy K. Y. Tang,et al.  Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. , 2008, Lab on a chip.

[25]  A. Llobera,et al.  Full-field photonic biosensors based on tunable bio-doped sol-gel glasses. , 2008, Lab on a chip.

[26]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[27]  Daniel Ahmed,et al.  Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). , 2008, Lab on a chip.

[28]  Steven L Neale,et al.  Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media. , 2010, Lab on a chip.

[29]  Tony Jun Huang,et al.  An in-plane, variable optical attenuator using a fluid-based tunable reflective interface , 2009 .

[30]  Peter B Howell,et al.  Design and evaluation of a Dean vortex-based micromixer. , 2004, Lab on a chip.

[32]  Robert E. Wilson,et al.  Fundamentals of momentum, heat, and mass transfer , 1969 .

[33]  Jinjie Shi,et al.  Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. , 2009, Lab on a chip.

[34]  Daniel Ahmed,et al.  Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[35]  Paul A Lane,et al.  Optical properties of a bio-inspired gradient refractive index polymer lens. , 2008, Optics express.

[36]  H. Zappe,et al.  Reconfigurable liquid micro-lenses with high positioning accuracy , 2008 .

[37]  S. Kalams,et al.  On-chip counting the number and the percentage of CD4+ T lymphocytes. , 2008, Lab on a chip.

[38]  Kelvin J. Liu,et al.  Counting single molecules in sub-nanolitre droplets. , 2010, Lab on a chip.

[39]  A. Hawkins,et al.  Optofluidic waveguides: II. Fabrication and structures , 2007, Microfluidics and nanofluidics.

[40]  A. Hiltner,et al.  Tunable polymer lens. , 2008, Optics express.

[41]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[42]  T. Huang,et al.  Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[43]  George M. Whitesides,et al.  Integrated fluorescent light source for optofluidic applications , 2005 .

[44]  R. Tompkins,et al.  Continuous inertial focusing, ordering, and separation of particles in microchannels , 2007, Proceedings of the National Academy of Sciences.

[45]  Changhuei Yang,et al.  The application of Fresnel zone plate based projection in optofluidic microscopy. , 2008, Optics express.

[46]  D. Sinton,et al.  Flow-dependent optofluidic particle trapping and circulation. , 2008, Lab on a chip.

[47]  T. Huang,et al.  Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. , 2009, Lab on a chip.