Classes of 3-regular graphs that are ( 7 , 2 )-edge-choosable

A graph is (7, 2)-edge-choosable if, for every assignment of lists of size 7 to the edges, it is possible to choose two colors for each edge from its list so that no color is chosen for two incident edges. We show that every 3-edge-colorable graph is (7, 2)-edge-choosable and also that many non-3-edge-colorable 3-regular graphs are (7, 2)-edge-choosable.