Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root.

[1]  A. Bano,et al.  The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria , 2017, Symbiosis.

[2]  Xiao-jie Xu,et al.  Rapid Characterization and Identification of Flavonoids in Radix Astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. , 2015, Journal of chromatographic science.

[3]  M. P. Princi,et al.  Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types , 2015, Plant Growth Regulation.

[4]  S. T. Shah,et al.  Effect of IAA on in vitro growth and colonization of Nostoc in plant roots , 2015, Front. Plant Sci..

[5]  Eva Rosenqvist,et al.  Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. , 2014, Journal of plant physiology.

[6]  A. Hamid,et al.  Antioxidant Properties and Glucan Compositions of Various Crude Extract from Lentinus squarrosulus Mycelial Culture , 2014 .

[7]  A. Arnold,et al.  Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte , 2013, PloS one.

[8]  P. Lemanceau,et al.  Going back to the roots: the microbial ecology of the rhizosphere , 2013, Nature Reviews Microbiology.

[9]  R. Marchiosi,et al.  Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth , 2013, PloS one.

[10]  T. Sieber,et al.  Fungal Root Endophytes , 2013 .

[11]  Matthew G. Bakker,et al.  Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions , 2013, PloS one.

[12]  In-Jung Lee,et al.  Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress , 2012, Molecules.

[13]  U. Mathesius,et al.  The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. , 2012, Journal of experimental botany.

[14]  Yu-ying Zhao,et al.  Characterization of flavonoids in Millettia nitida var. hirsutissima by HPLC/DAD/ESI-MSn , 2011, Journal of pharmaceutical analysis.

[15]  M. Ganzera,et al.  Recent advances on HPLC/MS in medicinal plant analysis. , 2011, Journal of pharmaceutical and biomedical analysis.

[16]  M. Megias,et al.  Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots , 2010, Plant and Soil.

[17]  A. Lupini,et al.  Allelochemical effects on net nitrate uptake and plasma membrane H+-ATPase activity in maize seedlings , 2010, Biologia Plantarum.

[18]  Haimin Chen,et al.  Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. , 2010, Annals of Microbiology.

[19]  X. Xia,et al.  Selective trans-Cinnamic Acid Uptake Impairs [Ca2+]cyt Homeostasis and Growth in Cucumis sativus L. , 2009, Journal of Chemical Ecology.

[20]  J. Vivanco,et al.  Rhizosphere chemical dialogues: plant-microbe interactions. , 2009, Current opinion in biotechnology.

[21]  C. Pieterse,et al.  Networking by small-molecule hormones in plant immunity. , 2009, Nature chemical biology.

[22]  W. Raza,et al.  Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f.sp. niveum. , 2008, Journal of agricultural and food chemistry.

[23]  K. Shi,et al.  Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. , 2007, Journal of experimental botany.

[24]  H. Vierheilig,et al.  The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. , 2007, Canadian journal of microbiology.

[25]  S. Steinkellner,et al.  Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. , 2007, Molecules.

[26]  Kazuo Suzuki,et al.  Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus , 2007, Mycorrhiza.

[27]  J. Vivanco,et al.  The role of root exudates in rhizosphere interactions with plants and other organisms. , 2006, Annual review of plant biology.

[28]  K. Becker,et al.  The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Schulz,et al.  The endophytic continuum. , 2005, Mycological research.

[30]  D. Lelie,et al.  Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants , 2004, Nature Biotechnology.

[31]  M. Farag,et al.  Bacterial Volatiles Induce Systemic Resistance in Arabidopsis1 , 2004, Plant Physiology.

[32]  T. S. Suryanarayanan,et al.  Endophytic fungal communities in leaves of tropical forest trees: Diversity and distribution patterns , 2003 .

[33]  Vladimir B. Bajic,et al.  Enhancement of Plant-Microbe Interactions Using a Rhizosphere Metabolomics-Driven Approach and Its Application in the Removal of Polychlorinated Biphenyls1,212 , 2003, Plant Physiology.

[34]  S. Lumyong,et al.  Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand , 2001 .

[35]  H. Matsui,et al.  1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Induced by ACC Synthesized and Accumulated in Penicillium citrinum Intracellular Spaces , 2000, Bioscience, biotechnology, and biochemistry.

[36]  Y. Kapulnik,et al.  Signal Transduction Pathways in Mycorrhizal Associations: Comparisons with the Rhizobium-Legume Symbiosis. , 1998, Fungal genetics and biology : FG & B.

[37]  G. Webster,et al.  Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. , 1997, Molecular plant-microbe interactions : MPMI.

[38]  B. Forster,et al.  Protocol for Screening for Salt Tolerance in Barley and Wheat , 2016 .

[39]  K. Pathak,et al.  Plant-Microbial Interaction: A Dialogue Between Two Dynamic Bioentities , 2014 .

[40]  P. Goliński,et al.  Phenolic Content Changes in Plants Under Salt Stress , 2013 .

[41]  F. Martin,et al.  Signalling in Ectomycorrhizal Symbiosis , 2012 .

[42]  F. Baluška,et al.  Signaling and Communication in Plant Symbiosis , 2012, Signaling and Communication in Plants.

[43]  In-Jung Lee,et al.  Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of Crown daisy (Chrysanthemum coronarium). , 2010, Journal of microbiology and biotechnology.

[44]  G. Neumann,et al.  The Release of Root Exudates as Affected by the Plant Physiological Status , 2007 .

[45]  BMC Microbiology BioMed Central Research article , 2004 .

[46]  A. Sessitsch,et al.  Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. , 2002, FEMS microbiology ecology.

[47]  D. Malinowski,et al.  Neotyphodium coenophialum‐endophyte infection affects the ability of tall fescue to use sparingly available phosphorus , 1999 .

[48]  G. Réversat,et al.  Use of a mixture of sand and water-absorbent synthetic polymer as substrate for the xenic culturing of plant-parasitic nematodes in the laboratory , 1999 .

[49]  E. Nelson,et al.  Nutritional factors affecting responses of sporangia of Pythium ultimum to germination stimulants , 1994 .