Feature Extraction Using Histogram Entropies of Euclidean Distances for Vehicle Classification

This paper presents a novel method for feature extraction based on the generalized entropy of the histogram formed by Euclidean distances, which is named distributive entropy of Euclidean distance (DEED in sort). DEED is a nonlinear measure for learning feature space, which provides the congregate and information measure of learning samples space. The ratio of between-class DEED to within-class DEED (Jrd ) is used as a new nonlinear separability criterion for optimizing feature selection. Experiments on vehicle classification show that the proposed method has better performance on all the datasets than the fisher linear discriminant analysis