MISEP Method for Postnonlinear Blind Source Separation

In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods.

[1]  S. Batzoglou,et al.  Application of independent component analysis to microarrays , 2003, Genome Biology.

[2]  Xing-Ming Zhao,et al.  Gene Expression Data Classification Using Consensus Independent Component Analysis , 2008, Genom. Proteom. Bioinform..

[3]  Christian Jutten,et al.  Nonlinear source separation: the post-nonlinear mixtures , 1997, ESANN.

[4]  Yujie Zhang,et al.  Linear and nonlinear ICA based on mutual information , 2007, 2007 International Symposium on Intelligent Signal Processing and Communication Systems.

[5]  Harri Valpola Nonlinear independent component analysis using ensemble learning: Theory , 2000 .

[6]  Christian Jutten,et al.  Source separation based processing for integrated Hall sensor arrays , 2002 .

[7]  Shin Ishii,et al.  Nonlinear and Noisy Extension of Independent Component Analysis: Theory and Its Application to a Pitch Sensation Model , 2005, Neural Computation.

[8]  Dominique Martinez,et al.  Nonlinear blind source separation using kernels , 2003, IEEE Trans. Neural Networks.

[9]  References , 1971 .

[10]  Gustavo Deco,et al.  Nonlinear higher-order statistical decorrelation by volume-conserving neural architectures , 1995, Neural Networks.

[11]  Aapo Hyv Fast and Robust Fixed-Point Algorithms for Independent Component Analysis , 1999 .

[12]  Jack D. Cowan,et al.  Source Separation and Density Estimation by Faithful Equivariant SOM , 1996, NIPS.

[13]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[14]  Aapo Hyvärinen,et al.  Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.

[15]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: LNL cascade models , 1986, Biological Cybernetics.

[16]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[17]  Luís B. Almeida,et al.  Linear and nonlinear ICA based on mutual information - the MISEP method , 2004, Signal Process..

[18]  Christian Jutten,et al.  A geometric approach for separating post non-linear mixtures , 2002, 2002 11th European Signal Processing Conference.

[19]  Dimitrios Hatzinakos,et al.  Blind identification of LTI-ZMNL-LTI nonlinear channel models , 1995, IEEE Trans. Signal Process..

[20]  A. Hyvärinen,et al.  Nonlinear Blind Source Separation by Self-Organizing Maps , 1996 .

[21]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[22]  Anisse Taleb,et al.  A generic framework for blind source separation in structured nonlinear models , 2002, IEEE Trans. Signal Process..

[23]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..

[24]  Te-Won Lee,et al.  Blind source separation of nonlinear mixing models , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[25]  C. Jutten,et al.  Bayesian versus constrained structure approaches for source separation in post-nonlinear mixtures , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[26]  Dinh Tuan Pham,et al.  BLIND SOURCE SEPARATION IN POST NONLINEAR MIXTURES , 2001 .

[27]  Gilles Burel,et al.  Blind separation of sources: A nonlinear neural algorithm , 1992, Neural Networks.

[28]  Christian Jutten,et al.  Source separation in post nonlinear mixtures: an entropy-based algorithm , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[29]  H. H. Yang,et al.  Information backpropagation for blind separation of sources in nonlinear mixture , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[30]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[31]  Christian Jutten,et al.  Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..

[32]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[33]  Christian Jutten,et al.  Identifiability of post-nonlinear mixtures , 2005, IEEE Signal Processing Letters.

[34]  Christian Jutten,et al.  Three easy ways for separating nonlinear mixtures? , 2004, Signal Process..

[35]  Russell Beale,et al.  Handbook of Neural Computation , 1996 .

[36]  Dinh-Tuan Pham,et al.  Improving algorithm speed in PNL mixture separation and Wiener system inversion , 2003 .

[37]  Andrzej Cichocki,et al.  Information-theoretic approach to blind separation of sources in non-linear mixture , 1998, Signal Process..

[38]  Christian Jutten,et al.  Entropy Optimization - Application to Blind Source Separation , 1997, ICANN.

[39]  Lawrence E. Larson,et al.  Radio frequency integrated circuit technology for low-power wireless communications , 1998, IEEE Wirel. Commun..

[40]  Petteri Pajunen,et al.  Blind source separation using algorithmic information theory , 1998, Neurocomputing.

[41]  Antti Honkela,et al.  Post-nonlinear Independent Component Analysis by Variational Bayesian Learning , 2004, ICA.

[42]  Susanne D. Coates Neural Interfacing: Forging the Human-Machine Connection , 2008, Neural Interfacing.

[43]  Motoaki Kawanabe,et al.  Blind Separation of Post-nonlinear Mixtures using Linearizing Transformations and Temporal Decorrelation , 2003, J. Mach. Learn. Res..

[44]  M. Herrmann,et al.  Perspectives and Limitations of Self-Organizing Maps in Blind Separation of Source Signals , 2007 .

[45]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[46]  De-Shuang Huang The local minima-free condition of feedforward neural networks for outer-supervised learning , 1998, IEEE Trans. Syst. Man Cybern. Part B.