The Combination of Evidence in the Transferable Belief Model

A description of the transferable belief model, which is used to quantify degrees of belief based on belief functions, is given. The impact of open- and closed-world assumption on conditioning is discussed. The nature of the frame of discernment on which a degree of belief will be established is discussed. A set of axioms justifying Dempster's rule for the combination of belief functions induced by two distinct evidences is presented. >

[1]  D. G. Johnson,et al.  The Role and Effectiveness of Theories of Decision in Practice , 1977 .

[2]  P. Smets Medical diagnosis: Fuzzy sets and degrees of belief , 1981 .

[3]  John D. Lowrance,et al.  An Inference Technique for Integrating Knowledge from Disparate Sources , 1981, IJCAI.

[4]  I. Good,et al.  Probability and the Weighting of Evidence. , 1951 .

[5]  Cedric A. B. Smith,et al.  Consistency in Statistical Inference and Decision , 1961 .

[6]  Brian R. Gaines,et al.  Fuzzy Reasonings and Its Applications , 1981 .

[7]  David Lindley Scoring rules and the inevitability of probability , 1982 .

[8]  田中 穂積 E.H.Shortliffe 著, "Computer-Based Medical Consultations : MYCIN", American Elsevier, A4判, 264ぺージ, \10,080, 1976 , 1978 .

[9]  G. Choquet Theory of capacities , 1954 .

[10]  Thomas M. Strat Continuous Belief Functions for Evidential Reasoning , 1984, AAAI.

[11]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[12]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[14]  S. Bernstein,et al.  Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle , 1926 .

[15]  J. Hartigan Theories of Probability , 1983 .

[16]  Philippe Smets Non-standard logics for automated reasoning , 1988 .

[17]  Edward H. Shortliffe,et al.  The Dempster-Shafer theory of evidence , 1990 .

[18]  Glenn Shafer,et al.  The combination of evidence , 1986, Int. J. Intell. Syst..

[19]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[20]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[21]  G. Shafer Lindley's Paradox , 1982 .

[22]  John Douglas Lowrance,et al.  Dependency-graph models of evidential support , 1982 .

[23]  Philippe Smets,et al.  Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.

[24]  Glenn Shafer,et al.  Languages and Designs for Probability Judgment , 1985, Cogn. Sci..

[25]  Tod S. Levitt,et al.  Uncertainty in artificial intelligence , 1988 .

[26]  S. Weber A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms , 1983 .

[27]  Brian R. Gaines,et al.  Fuzzy reasoning and its applications , 1981 .

[28]  Philippe Smets,et al.  The degree of belief in a fuzzy event , 1981, Inf. Sci..

[29]  Jeffrey A. Barnett,et al.  Computational Methods for a Mathematical Theory of Evidence , 1981, IJCAI.

[30]  Elizabeth C. Hirschman,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[31]  Edward H. Shortliffe,et al.  A model of inexact reasoning in medicine , 1990 .

[32]  Edward H. Shortliffe,et al.  A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space , 1985, Artif. Intell..

[33]  Edward H. Shortliffe,et al.  Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project (The Addison-Wesley series in artificial intelligence) , 1984 .

[34]  Petr Hájek,et al.  On Belief Functions , 1992, Advanced Topics in Artificial Intelligence.

[35]  R. Yager On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..

[36]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .