Datasets and Evaluation for Simultaneous Localization and Mapping Related Problems: A Comprehensive Survey

Simultaneous Localization and Mapping (SLAM) has found an increasing utilization lately, such as self-driving cars, robot navigation, 3D mapping, virtual reality (VR) and augmented reality (AR), etc., empowering both industry and daily life. Although the state-of-the-art algorithms where developers have spared no effort are source of intelligence, it is the datasets that dedicate behind and raise us higher. The employment of datasets is essentially a kind of simulation but profits many aspects – capacity of drilling algorithm hourly, exemption of costly hardware and ground truth system, and equitable benchmark for evaluation. However, as a branch of great significance, still the datasets have not drawn wide attention nor been reviewed thoroughly. Hence in this article, we strive to give a comprehensive and open access review of SLAM related datasets and evaluation, which are scarcely surveyed while highly demanded by researchers and engineers, looking forward to serving as not only a dictionary but also a development proposal. The paper starts with the methodology of dataset collection, and a taxonomy of SLAM related tasks. Then followed with the main portion – comprehensively survey the existing SLAM related datasets by category with our considerate introductions and insights. Furthermore, we talk about the evaluation criteria, which are necessary to quantify the algorithm performance on the dataset and inspect the defects. At the end, we summarize the weakness of datasets and evaluation – which could well result in the weakness of topical algorithms – to promote bridging the gap fundamentally. INDEX TERMS Dataset, evaluation, Localization, Mapping, review, SLAM, survey.

[1]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[2]  Michael F. P. O'Boyle,et al.  Introducing SLAMBench, a performance and accuracy benchmarking methodology for SLAM , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Keith Yu Kit Leung,et al.  The UTIAS multi-robot cooperative localization and mapping dataset , 2011, Int. J. Robotics Res..

[4]  Klaus Schilling,et al.  Evaluation of a Backpack-Mounted 3D Mobile Scanning System , 2015, Remote. Sens..

[5]  Jean-Emmanuel Deschaud,et al.  IMLS-SLAM: Scan-to-Model Matching Based on 3D Data , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Luke Fletcher,et al.  A High-rate, Heterogeneous Data Set From The DARPA Urban Challenge , 2010, Int. J. Robotics Res..

[7]  Shinpei Kato,et al.  An Open Approach to Autonomous Vehicles , 2015, IEEE Micro.

[8]  Chenglu Wen,et al.  Toward Efficient 3-D Colored Mapping in GPS-/GNSS-Denied Environments , 2020, IEEE Geoscience and Remote Sensing Letters.

[9]  John J. Leonard,et al.  Real-time large-scale dense RGB-D SLAM with volumetric fusion , 2014, Int. J. Robotics Res..

[10]  Jan-Michael Frahm,et al.  Structure-from-Motion Revisited , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[12]  Walterio W. Mayol-Cuevas,et al.  Ninja on a Plane: Automatic Discovery of Physical Planes for Augmented Reality Using Visual SLAM , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[13]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[14]  Didier Stricker,et al.  CoRBS: Comprehensive RGB-D benchmark for SLAM using Kinect v2 , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[15]  Wolfram Burgard,et al.  Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields , 2017, Int. J. Robotics Res..

[16]  Josef Hallberg,et al.  Positioning with Bluetooth , 2003, 10th International Conference on Telecommunications, 2003. ICT 2003..

[17]  Milad Ramezani,et al.  The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth , 2020, ArXiv.

[18]  Martin Lauer,et al.  LIMO: Lidar-Monocular Visual Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  Thierry Peynot,et al.  The Marulan Data Sets: Multi-sensor Perception in a Natural Environment with Challenging Conditions , 2010, Int. J. Robotics Res..

[20]  Shuhan Shen,et al.  Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for Large-Scale Scenes , 2013, IEEE Transactions on Image Processing.

[21]  Noah Snavely,et al.  Learning to Match Images in Large-Scale Collections , 2012, ECCV Workshops.

[22]  Clancy Wilmott,et al.  Mobile Mapping , 2018 .

[23]  Paul Timothy Furgale,et al.  Continuous-time batch estimation using temporal basis functions , 2012, 2012 IEEE International Conference on Robotics and Automation.

[24]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[25]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[27]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[28]  Gianfranco Visentin,et al.  The Katwijk beach planetary rover dataset , 2018, Int. J. Robotics Res..

[29]  Daniel Cremers,et al.  Semi-dense Visual Odometry for a Monocular Camera , 2013, 2013 IEEE International Conference on Computer Vision.

[30]  Daniel P. Huttenlocher,et al.  Location Recognition Using Prioritized Feature Matching , 2010, ECCV.

[31]  Ronen Basri,et al.  A Survey on Structure from Motion , 2017, ArXiv.

[32]  Andrew Price,et al.  Visual odometry for an outdoor mobile robot , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[33]  Xin Chen,et al.  City-scale landmark identification on mobile devices , 2011, CVPR 2011.

[34]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[35]  Jinyong Jeong,et al.  Radar Dataset for Robust Localization and Mapping in Urban Environment , 2019 .

[36]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[37]  Tobi Delbrück,et al.  The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM , 2016, Int. J. Robotics Res..

[38]  Zhengyou Zhang,et al.  Microsoft Kinect Sensor and Its Effect , 2012, IEEE Multim..

[39]  Ryan M. Eustice,et al.  Ford Campus vision and lidar data set , 2011, Int. J. Robotics Res..

[40]  Stefan Leutenegger,et al.  Dense RGB-D-inertial SLAM with map deformations , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[41]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[42]  Daniel Cremers,et al.  Large-scale direct SLAM for omnidirectional cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[43]  Titus Cieslewski,et al.  Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[44]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[45]  Aníbal Matos,et al.  Urban@CRAS dataset: Benchmarking of visual odometry and SLAM techniques , 2018, Robotics Auton. Syst..

[46]  Burkhard Wünsche,et al.  Using the Kinect as a navigation sensor for mobile robotics , 2012, IVCNZ '12.

[47]  Pascal Fua,et al.  Worldwide Pose Estimation Using 3D Point Clouds , 2012, ECCV.

[48]  Henrik Aanæs,et al.  Large Scale Multi-view Stereopsis Evaluation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Torsten Sattler,et al.  A Multi-view Stereo Benchmark with High-Resolution Images and Multi-camera Videos , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Noah Snavely,et al.  Robust Global Translations with 1DSfM , 2014, ECCV.

[51]  Sebastien Glaser,et al.  Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving , 2017, IEEE Transactions on Intelligent Vehicles.

[52]  Daniel Cremers,et al.  Rolling-Shutter Modelling for Direct Visual-Inertial Odometry , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[53]  Richard Elvira,et al.  ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM , 2021, IEEE Transactions on Robotics.

[54]  Winston Churchill,et al.  The New College Vision and Laser Data Set , 2009, Int. J. Robotics Res..

[55]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Ling Shao,et al.  RGB-D datasets using microsoft kinect or similar sensors: a survey , 2017, Multimedia Tools and Applications.

[57]  Javier Ruiz-del-Solar,et al.  Chilean underground mine dataset , 2017, Int. J. Robotics Res..

[58]  Paul H. J. Kelly,et al.  Dense planar SLAM , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[59]  Roland Siegwart,et al.  Vision based MAV navigation in unknown and unstructured environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[60]  Francisco Angel Moreno,et al.  A collection of outdoor robotic datasets with centimeter-accuracy ground truth , 2009, Auton. Robots.

[61]  Hend Suliman Al-Khalifa,et al.  Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances † , 2016, Sensors.

[62]  Shin-Dug Kim,et al.  Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices , 2017, Sensors.

[63]  Eduard Vidal,et al.  Underwater caves sonar data set , 2017, Int. J. Robotics Res..

[64]  Matthew Gadd,et al.  Real-time Kinematic Ground Truth for the Oxford RobotCar Dataset , 2020, ArXiv.

[65]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[67]  Duc Thanh Nguyen,et al.  SceneNN: A Scene Meshes Dataset with aNNotations , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[68]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[69]  Richard Szeliski,et al.  Reconstructing Rome , 2010, Computer.

[70]  Pascal Fua,et al.  On benchmarking camera calibration and multi-view stereo for high resolution imagery , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[71]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[72]  In So Kweon,et al.  KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving , 2018, IEEE Transactions on Intelligent Transportation Systems.

[73]  Andrew Owens,et al.  SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels , 2013, 2013 IEEE International Conference on Computer Vision.

[74]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[75]  R. Siegwart,et al.  Self-supervised calibration for robotic systems , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[76]  Jörg Stückler,et al.  The TUM VI Benchmark for Evaluating Visual-Inertial Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[77]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[78]  Noah Snavely,et al.  Network Principles for SfM: Disambiguating Repeated Structures with Local Context , 2013, 2013 IEEE International Conference on Computer Vision.

[79]  Andreas Geiger,et al.  Automatic camera and range sensor calibration using a single shot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[80]  Huai-Rong Shao,et al.  WiFi-based indoor positioning , 2015, IEEE Communications Magazine.

[81]  Thomas A. Funkhouser,et al.  Semantic Scene Completion from a Single Depth Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Guoquan Huang,et al.  Visual-Inertial Navigation: A Concise Review , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[83]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[84]  Olivier Stasse,et al.  Real-time 3D SLAM for Humanoid Robot considering Pattern Generator Information , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[85]  Davide Scaramuzza,et al.  The Zurich urban micro aerial vehicle dataset , 2017, Int. J. Robotics Res..

[86]  John Enright,et al.  The Devon Island rover navigation dataset , 2012, Int. J. Robotics Res..

[87]  Andreas Geiger,et al.  Visual SLAM for autonomous ground vehicles , 2011, 2011 IEEE International Conference on Robotics and Automation.

[88]  Francisco Angel Moreno,et al.  The Málaga urban dataset: High-rate stereo and LiDAR in a realistic urban scenario , 2014, Int. J. Robotics Res..

[89]  Wenbin Li,et al.  InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset , 2018, BMVC.

[90]  Dieter Fox,et al.  Unsupervised feature learning for 3D scene labeling , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[91]  Stefan Kohlbrecher,et al.  A flexible and scalable SLAM system with full 3D motion estimation , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[92]  Torsten Sattler,et al.  BAD SLAM: Bundle Adjusted Direct RGB-D SLAM , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[93]  William Whittaker,et al.  Autonomous driving in urban environments: Boss and the Urban Challenge , 2008, J. Field Robotics.

[94]  Ivan Markovic,et al.  SOFT‐SLAM: Computationally efficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles , 2018, J. Field Robotics.

[95]  Cyrill Stachniss,et al.  ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[96]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[97]  e-traces,et al.  Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam - e-traces , 2018 .

[98]  Cheng Wang,et al.  Semantic line framework-based indoor building modeling using backpacked laser scanning point cloud , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[99]  Ji Zhang,et al.  Visual-lidar odometry and mapping: low-drift, robust, and fast , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[100]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[101]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[102]  Pauline Trouvé-Peloux,et al.  AQUALOC: An underwater dataset for visual–inertial–pressure localization , 2019, Int. J. Robotics Res..

[103]  Camillo Ressl,et al.  Undistorting the past: new techniques for orthorectification of archaeological aerial frame imagery , 2013 .

[104]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[105]  Cyrill Stachniss,et al.  Simultaneous Localization and Mapping , 2016, Springer Handbook of Robotics, 2nd Ed..

[106]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[107]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[108]  Stefan Leutenegger,et al.  SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-training on Indoor Segmentation? , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[109]  Hujun Bao,et al.  Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality , 2019, Virtual Real. Intell. Hardw..

[110]  Daniel Cremers,et al.  Semi-dense visual odometry for AR on a smartphone , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[111]  Richard Szeliski,et al.  Building Rome in a day , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[112]  Roland Siegwart,et al.  Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board MAV planning , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[113]  Peter I. Corke,et al.  Experimental Comparison of Odometry Approaches , 2013, ISER.

[114]  Daxin Tian,et al.  Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review , 2021, IEEE Transactions on Intelligent Transportation Systems.

[115]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[116]  Gordon Wyeth,et al.  Persistent Navigation and Mapping using a Biologically Inspired SLAM System , 2010, Int. J. Robotics Res..

[117]  A. Lee,et al.  ViViD++ : Vision for Visibility Dataset , 2022, IEEE Robotics and Automation Letters.

[118]  Ashish Kapoor,et al.  TartanAir: A Dataset to Push the Limits of Visual SLAM , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[119]  Sertac Karaman,et al.  The Blackbird Dataset: A large-scale dataset for UAV perception in aggressive flight , 2018, ISER.

[120]  Andrea Fusiello,et al.  Structure-and-motion pipeline on a hierarchical cluster tree , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[121]  Edwin Olson,et al.  AprilTag: A robust and flexible visual fiducial system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[122]  Roland Siegwart,et al.  Challenging data sets for point cloud registration algorithms , 2012, Int. J. Robotics Res..

[123]  Andrew W. Fitzgibbon,et al.  Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[124]  Michael Goesele,et al.  The Replica Dataset: A Digital Replica of Indoor Spaces , 2019, ArXiv.

[125]  Wei Yang,et al.  Are We Ready for Service Robots? The OpenLORIS-Scene Datasets for Lifelong SLAM , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[126]  Daniel Cremers,et al.  Continuous Global Optimization in Multiview 3D Reconstruction , 2007, International Journal of Computer Vision.

[127]  Daniel Cremers,et al.  A Photometrically Calibrated Benchmark For Monocular Visual Odometry , 2016, ArXiv.

[128]  José Ruíz Ascencio,et al.  Visual simultaneous localization and mapping: a survey , 2012, Artificial Intelligence Review.

[129]  George Vosselman,et al.  Design, Calibration, and Evaluation of a Backpack Indoor Mobile Mapping System , 2019, Remote. Sens..

[130]  Eyal de Lara,et al.  Accurate GSM Indoor Localization , 2005, UbiComp.

[131]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[132]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[133]  Andrew Owens,et al.  Discrete-continuous optimization for large-scale structure from motion , 2011, CVPR 2011.

[134]  Michael F. P. O'Boyle,et al.  SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[135]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[136]  Pushmeet Kohli,et al.  When Can We Use KinectFusion for Ground Truth Acquisition , 2012 .

[137]  Paul H. J. Kelly,et al.  Application-oriented design space exploration for SLAM algorithms , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[138]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[139]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[140]  Federico Tombari,et al.  CNN-SLAM: Real-Time Dense Monocular SLAM with Learned Depth Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[141]  Chenglu Wen,et al.  Mapping and Semantic Modeling of Underground Parking Lots Using a Backpack LiDAR System , 2019, IEEE Transactions on Intelligent Transportation Systems.

[142]  Jan-Michael Frahm,et al.  Pixelwise View Selection for Unstructured Multi-View Stereo , 2016, ECCV.

[143]  Xin Li,et al.  LO-Net: Deep Real-Time Lidar Odometry , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[144]  Javier Civera,et al.  The Rosario dataset: Multisensor data for localization and mapping in agricultural environments , 2018, Int. J. Robotics Res..

[145]  Derek Bradley,et al.  Accurate multi-view reconstruction using robust binocular stereo and surface meshing , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[146]  Alexander Carballo,et al.  A Survey of Autonomous Driving: Common Practices and Emerging Technologies , 2019, IEEE Access.

[147]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[148]  Stefan Leutenegger,et al.  ElasticFusion: Dense SLAM Without A Pose Graph , 2015, Robotics: Science and Systems.

[149]  Jörg Stückler,et al.  Large-scale direct SLAM with stereo cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[150]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[151]  Vijay Kumar,et al.  Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight , 2017, IEEE Robotics and Automation Letters.

[152]  Naila Murray,et al.  Virtual KITTI 2 , 2020, ArXiv.

[153]  Vijay Kumar,et al.  The Multivehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception , 2018, IEEE Robotics and Automation Letters.

[154]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[155]  Li Wang,et al.  SLAM integrated mobile mapping system in complex urban environments , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[156]  Ryan M. Eustice,et al.  University of Michigan North Campus long-term vision and lidar dataset , 2016, Int. J. Robotics Res..

[157]  Arno Solin,et al.  ADVIO: An authentic dataset for visual-inertial odometry , 2018, ECCV.

[158]  Hujun Bao,et al.  Robust Keyframe-Based Monocular SLAM for Augmented Reality , 2016, 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct).

[159]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[160]  Hyun Chul Roh,et al.  Complex urban dataset with multi-level sensors from highly diverse urban environments , 2019, Int. J. Robotics Res..

[161]  José-Raúl Ruiz-Sarmiento,et al.  Robot@Home, a robotic dataset for semantic mapping of home environments , 2017, Int. J. Robotics Res..

[162]  Giulio Fontana,et al.  Rawseeds ground truth collection systems for indoor self-localization and mapping , 2009, Auton. Robots.

[163]  Tobi Delbrück,et al.  A 128$\times$ 128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor , 2008, IEEE Journal of Solid-State Circuits.

[164]  Brendan Englot,et al.  LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[165]  Matthias Nießner,et al.  BundleFusion , 2016, TOGS.

[166]  Li-Ta Hsu,et al.  Performance Analysis of NDT-based Graph SLAM for Autonomous Vehicle in Diverse Typical Driving Scenarios of Hong Kong , 2018, Sensors.

[167]  Ashutosh Singandhupe,et al.  A Review of SLAM Techniques and Security in Autonomous Driving , 2019, 2019 Third IEEE International Conference on Robotic Computing (IRC).

[168]  Qiao Wang,et al.  VirtualWorlds as Proxy for Multi-object Tracking Analysis , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[169]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[170]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[171]  Charles K. Toth,et al.  Collaborative monocular SLAM with crowdsourced data , 2018 .

[172]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[173]  Tim D. Barfoot,et al.  The Canadian planetary emulation terrain 3D mapping dataset , 2013, Int. J. Robotics Res..

[174]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[175]  Michael Firman,et al.  RGBD Datasets: Past, Present and Future , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[176]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[177]  Kostas Daniilidis,et al.  PennCOSYVIO: A challenging Visual Inertial Odometry benchmark , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[178]  Michael Gassner,et al.  SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems , 2017, IEEE Transactions on Robotics.

[179]  Kang Lee,et al.  IEEE 1588 standard for a precision clock synchronization protocol for networked measurement and control systems , 2002, 2nd ISA/IEEE Sensors for Industry Conference,.

[180]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[181]  Michael F. P. O'Boyle,et al.  SLAMBench 3.0: Systematic Automated Reproducible Evaluation of SLAM Systems for Robot Vision Challenges and Scene Understanding , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[182]  Vladlen Koltun,et al.  Color map optimization for 3D reconstruction with consumer depth cameras , 2014, ACM Trans. Graph..

[183]  Uwe Stilla,et al.  A Synchronized Stereo and Plenoptic Visual Odometry Dataset , 2018, ArXiv.

[184]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.