Pressure assisted sintering stress exponent assessment methods: Accuracy analysis and effect of sintering stress

[1]  S. Marinel,et al.  Role of microstructure reactivity and surface diffusion in explaining flash (ultra-rapid) sintering kinetics , 2022, Journal of the European Ceramic Society.

[2]  S. Marinel,et al.  Rapid microwave sintering of centimetric zirconia: scalability and electromagnetic‐thermal‐fluid‐dynamic simulation , 2022, Journal of the American Ceramic Society.

[3]  S. Marinel,et al.  Porous stage assessment of pressure assisted sintering modeling parameters: a ceramic identification method insensitive to final stage grain growth disturbance , 2021 .

[4]  A. Mukhopadhyay,et al.  Review on ultra-high temperature boride ceramics , 2020, Progress in Materials Science.

[5]  G. Hilmas,et al.  Densification of ultra-refractory transition metal diboride ceramics , 2020, Science of Sintering.

[6]  E. Olevsky,et al.  Electric current effects in spark plasma sintering: From the evidence of physical phenomenon to constitutive equation formulation , 2019, Scripta Materialia.

[7]  E. Olevsky,et al.  Consolidation of Molybdenum nanopowders by spark plasma sintering: Densification mechanism and first mirror application , 2019, Journal of Nuclear Materials.

[8]  E. Olevsky,et al.  Oxidation effects on spark plasma sintering of molybdenum nanopowders , 2018, Journal of the American Ceramic Society.

[9]  C. Estournès,et al.  A spark plasma sintering densification modeling approach: from polymer, metals to ceramics , 2018, Journal of Materials Science.

[10]  E. Olevsky,et al.  Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering , 2018 .

[11]  E. Olevsky,et al.  All-Materials-Inclusive Flash Spark Plasma Sintering , 2017, Scientific Reports.

[12]  M. Bellet,et al.  In-situ creep law determination for modeling Spark Plasma Sintering of TiAl 48-2-2 powder , 2017 .

[13]  E. Olevsky,et al.  Current understanding and future research directions at the onset of the next century of sintering science and technology , 2017 .

[14]  E. Olevsky,et al.  Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering , 2016 .

[15]  A. Goldstein,et al.  Transparent Ceramics at 50: Progress Made and Further Prospects , 2016 .

[16]  C. Estournès,et al.  Identification of the Norton‐Green Compaction Model for the Prediction of the Ti–6Al–4V Densification During the Spark Plasma Sintering Process   , 2016 .

[17]  G. Antou,et al.  Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina , 2015, Journal of Materials Science.

[18]  G. Antou,et al.  Hot pressing and spark plasma sintering of alumina: Discussion about an analytical modelling used for sintering mechanism determination , 2014 .

[19]  O. Guillon,et al.  Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments , 2014 .

[20]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability , 2012 .

[21]  A. Molinari,et al.  Modeling of conventional hot compaction and Spark Plasma Sintering based on modified micromechanical models of porous materials , 2012 .

[22]  E. Olevsky,et al.  Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry , 2012, Journal of Materials Science.

[23]  Michael J. Hoffmann,et al.  Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina , 2009 .

[24]  Y. Sakka,et al.  Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008 , 2009, Science and technology of advanced materials.

[25]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[26]  L. Froyen,et al.  Consolidation enhancement in spark-plasma sintering: Impact of high heating rates , 2007 .

[27]  G. Bernard-Granger,et al.  Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification , 2007 .

[28]  L. Froyen,et al.  Constitutive modeling of spark-plasma sintering of conductive materials , 2006 .

[29]  P. Dorémus,et al.  Constitutive behaviour of metal powder during hot forming. Part I: Experimental investigation with lead powder as a simulation material , 1999 .

[30]  Eugene A. Olevsky,et al.  Theory of sintering: from discrete to continuum , 1998 .

[31]  A. Cocks,et al.  Constitutive models for the sintering of ceramic components—I. Material models , 1992 .

[32]  J. Besson,et al.  Rheology of porous alumina and simulation of hot isostatic pressing , 1992 .

[33]  R. McMeeking,et al.  Creep of Power-Law Material Containing Spherical Voids , 1991 .

[34]  M. Ashby,et al.  Hot isostatic pressing diagrams : new developments , 1985 .

[35]  R. J. Green,et al.  A plasticity theory for porous solids , 1972 .

[36]  D. Shen,et al.  Materials development and potential applications of transparent ceramics: A review , 2020 .

[37]  R. Orrú,et al.  Ultra-high temperature ceramics by spark plasma sintering , 2019, Spark Plasma Sintering.

[38]  R. German Sintering With External Pressure , 2014 .

[39]  L. Lang,et al.  Densification Modeling of Titanium Alloy Powder during Hot Isostatic Pressing , 2011 .

[40]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[41]  A. Cocks Inelastic deformation of porous materials , 1989 .

[42]  M. Abouaf,et al.  Finite element simulation of hot isostatic pressing of metal powders , 1988 .

[43]  Amiya K. Mukherjee,et al.  High-Temperature Creep , 1975 .