Influence of Dispersion Interactions on the Polymorphic Stability of Crystalline Oxides

[1]  S. Jana,et al.  Correct Structural Phase Stability of FeS2, TiO2, and MnO2 from a Semilocal Density Functional , 2021 .

[2]  A. Otero-de-la-Roza,et al.  Application of XDM to ionic solids: The importance of dispersion for bulk moduli and crystal geometries. , 2020, The Journal of chemical physics.

[3]  A. Gross,et al.  Improved DFT Adsorption Energies with Semiempirical Dispersion Corrections. , 2019, Journal of chemical theory and computation.

[4]  Yubo Zhang,et al.  Subtlety of TiO2 phase stability: Reliability of the density functional theory predictions and persistence of the self-interaction error. , 2019, The Journal of chemical physics.

[5]  C. Bannwarth,et al.  A generally applicable atomic-charge dependent London dispersion correction. , 2018, The Journal of chemical physics.

[6]  B. Chalamala,et al.  Ab Initio Studies of Hydrogen Ion Insertion into β-, R-, and γ-MnO2 Polymorphs and the Implications for Shallow-Cycled Rechargeable Zn/MnO2 Batteries , 2018 .

[7]  Bartolomeo Civalleri,et al.  Quantum‐mechanical condensed matter simulations with CRYSTAL , 2018 .

[8]  Junlin Jia,et al.  The electronic properties and enhanced photocatalytic mechanism of TiO 2 hybridized with MoS 2 sheet , 2018 .

[9]  A. Baranov,et al.  On the thermodynamic aspect of zinc oxide polymorphism: calorimetric study of metastable rock salt ZnO , 2017, 1706.03368.

[10]  B. Iversen,et al.  Low-Temperature Anharmonicity in Cesium Chloride (CsCl). , 2017, Angewandte Chemie.

[11]  A. Benali,et al.  Phase stability of TiO2 polymorphs from diffusion Quantum Monte Carlo , 2016, 1607.07361.

[12]  Zhipan Liu,et al.  Reaction Network of Layer-to-Tunnel Transition of MnO2. , 2016, Journal of the American Chemical Society.

[13]  J. Kitchin,et al.  Investigating the Energetic Ordering of Stable and Metastable TiO 2 Polymorphs Using DFT+U and Hybrid Functionals , 2015 .

[14]  C. Zicovich-Wilson,et al.  The role of long-range van der Waals forces in the relative stability of SiO2-zeolites , 2015 .

[15]  K. Berland,et al.  van der Waals forces in density functional theory: a review of the vdW-DF method , 2014, Reports on progress in physics. Physical Society.

[16]  Jeongnim Kim,et al.  Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo. , 2014, The Journal of chemical physics.

[17]  S. Grimme,et al.  DFT-D3 Study of Some Molecular Crystals , 2014 .

[18]  J. Kitchin,et al.  Identifying potential BO2 oxide polymorphs for epitaxial growth candidates. , 2014, ACS applied materials & interfaces.

[19]  Shang‐Peng Gao,et al.  The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs , 2013, 1312.2297.

[20]  Kieron Burke,et al.  DFT in a nutshell , 2013 .

[21]  E. Longo,et al.  DFT study with inclusion of the Grimme potential on anatase TiO2: structure, electronic, and vibrational analyses. , 2012, The journal of physical chemistry. A.

[22]  S. Grimme,et al.  A DFT-D study of structural and energetic properties of TiO2 modifications , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Florian Janetzko,et al.  Implementation of empirical dispersion corrections to density functional theory for periodic systems , 2012, J. Comput. Chem..

[24]  Lan Li,et al.  First-principles DFT + U studies of the atomic, electronic, and magnetic structure of α-MnO2 (cryptomelane) , 2012, 1202.0823.

[25]  A. Vittadini,et al.  2D vs. 3D titanium dioxide: Role of dispersion interactions , 2011 .

[26]  M. E. A. Dompablo,et al.  DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs. , 2011, The Journal of chemical physics.

[27]  Shun-Li Shang,et al.  First-principles study of lattice dynamics and thermodynamics of TiO2 polymorphs. , 2011, Inorganic chemistry.

[28]  S. Grimme,et al.  On the importance of the dispersion energy for the thermodynamic stability of molecules. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  J. Conesa,et al.  The Relevance of Dispersion Interactions for the Stability of Oxide Phases , 2010 .

[30]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[31]  Benjamin J. Morgan,et al.  Intrinsic n-type Defect Formation in TiO2: A Comparison of Rutile and Anatase from GGA+U Calculations , 2010 .

[32]  T. Çagin,et al.  Elastic properties and pressure induced transitions of ZnO polymorphs from first-principle calculations , 2009 .

[33]  P. Ugliengo,et al.  Role of dispersive interactions in layered materials: a periodic B3LYP and B3LYP-D* study of Mg(OH)2, Ca(OH)2 and kaolinite , 2009 .

[34]  Bin Wen,et al.  Relative stability of nanosized wurtzite and graphitic ZnO from density functional theory , 2008 .

[35]  Hangtian Zhu,et al.  Birnessite-type MnO2 Nanowalls and Their Magnetic Properties , 2008 .

[36]  Alexey A. Sokol,et al.  Zinc oxide: A case study in contemporary computational solid state chemistry , 2008, J. Comput. Chem..

[37]  Liping Li,et al.  One-dimensional α-MnO2: Trapping chemistry of tunnel structures, structural stability, and magnetic transitions , 2007 .

[38]  M. V. Ganduglia-Pirovano,et al.  Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges , 2007 .

[39]  C. Adamo,et al.  Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals. , 2007, The Journal of chemical physics.

[40]  Lixin Zhang,et al.  Structural transformation of ZnO nanostructures , 2007 .

[41]  L. Gracia,et al.  Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. , 2006, The journal of physical chemistry. B.

[42]  B. Amrani,et al.  Structural and electronic properties of ZnO under high pressures , 2006 .

[43]  Furio Corà * The performance of hybrid density functionals in solid state chemistry: the case of BaTiO3 , 2005 .

[44]  A. Simionovici,et al.  Size effects on the structure and phase transition behavior of baddeleyite TiO2 , 2005 .

[45]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[46]  A. Verbaere,et al.  On the structural defects in synthetic γ-MnO2s , 2004 .

[47]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[48]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[49]  G. Ceder,et al.  First Principles Study of H-insertion in MnO2 , 2002 .

[50]  A. Navrotsky,et al.  Energetics of nanocrystalline TiO2 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Makino,et al.  Structural characteristics and magnetic properties of λ-MnO2 films grown by plasma-assisted molecular beam epitaxy , 2001 .

[52]  Gerbrand Ceder,et al.  Layered-to-Spinel Phase Transition in Li x MnO2 , 2001 .

[53]  R. Ahuja,et al.  Materials science: The hardest known oxide , 2001, Nature.

[54]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[55]  S. Suib,et al.  A Review of Porous Manganese Oxide Materials , 1998 .

[56]  J. N. Reimers,et al.  Structure and Magnetism in λ-MnO2. Geometric Frustration in a Defect Spinel , 1998 .

[57]  M. Whittingham,et al.  Hydrothermal Synthesis and Characterization of KxMnO2·yH2O , 1996 .

[58]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[59]  M. Causà,et al.  Density functional LCAO calculation of periodic systems. A posteriori correction of the Hartree-Fock energy of covalent and ionic crystals , 1994 .

[60]  Kumagai Naoki,et al.  An Interatomic Potential Model for H2O: Applications to Water and Ice Polymorphs , 1994 .

[61]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[62]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[63]  O. J. Kleppa,et al.  Transformation Enthalpies of the TiO2 Polymorphs , 1979 .

[64]  M. Horn,et al.  Refinement of the structure of anatase at several temperatures , 1972 .

[65]  S. Abrahams,et al.  Rutile: Normal Probability Plot Analysis and Accurate Measurement of Crystal Structure , 1971 .

[66]  O. J. Kleppa,et al.  Enthalpy of the Anatase‐Rutile Transformation , 1967 .

[67]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  E. Lund,et al.  The Crystal Structure of Ramsdellite, an Orthorhombic Modification of MnO2. , 1949 .