Topological techniques for efficient rigorous computation in dynamics

We describe topological methods for the efficient, rigorous computation of dynamical systems. In particular, we indicate how Conley's Fundamental Decomposition Theorem is naturally related to combinatorial approximations of dynamical systems. Furthermore, we show that computations of Morse decompositions and isolating blocks can be performed efficiently. We conclude with examples indicating how these ideas can be applied to finite- and infinite-dimensional discrete and continuous dynamical systems.

[1]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[2]  Konstantin Mischaikow,et al.  On the global dynamics of attractors for scalar delay equations , 1996 .

[3]  M. Mrozek Leray functor and cohomological Conley index for discrete dynamical systems , 1990 .

[4]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[5]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[6]  A. Szymczak The Conley index and symbolic dynamics , 1996 .

[7]  Konstantin Mischaikow,et al.  Isolating neighborhoods and chaos , 1995 .

[8]  M. Mrozek,et al.  Conley index for discrete multi-valued dynamical systems , 1995 .

[9]  Jack K. Hale,et al.  Regularity, determining modes and Galerkin methods , 2003 .

[10]  Konstantin Mischaikow,et al.  Algebraic transition matrices in the Conley index theory , 1998 .

[11]  Konstantin Mischaikow,et al.  Exploring global dynamics: a numerical algorithm based on the conley index theory , 1995 .

[12]  A. Floer,et al.  A refinement of the Conley index and an application to the stability of hyperbolic invariant sets , 1987, Ergodic Theory and Dynamical Systems.

[13]  A. Spence,et al.  The numerical analysis of bifurcation problems with application to fluid mechanics , 2000, Acta Numerica.

[14]  R. Ho Algebraic Topology , 2022 .

[15]  Andrzej Szymczak The Conley index for decompositions of isolated invariant sets , 1995 .

[16]  M. C. Carbinatto,et al.  Horseshoes and the Conley Index Spectrum , 1999 .

[17]  Joel Smoller,et al.  The Conley Index , 1983 .

[18]  Konstantin Mischaikow,et al.  A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..

[19]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[20]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.

[21]  C. Conley,et al.  Isolated invariant sets and isolating blocks , 1971 .

[22]  Konstantin Mischaikow,et al.  Dynamics on the global attractor of a gradient flow arising from the Ginzburg-Landau equation , 1994 .

[23]  Konstantin Mischaikow,et al.  Zeta functions, periodic trajectories, and the conley index , 1995 .

[24]  Konstantin Mischaikow,et al.  Connected simple systems, transition matrices, and heteroclinic bifurcations , 1992 .

[25]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[26]  M. Mrozek Topological invariants, mulitvalued maps and computer assisted proofs in dynamics , 1996 .

[27]  David Richeson,et al.  Shift Equivalence and the Conley Index , 1999, math/9910171.

[28]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[29]  O. Junge,et al.  The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems , 2001 .

[30]  Robert W. Easton,et al.  Geometric methods for discrete dynamical systems , 1998 .

[31]  Robert W. Easton Isolating blocks and epsilon chains for maps , 1989 .

[32]  K. Mischaikow,et al.  Computing Homology , 2001 .

[33]  Konstantin Mischaikow,et al.  Global asymptotic dynamics of gradient-like bistable equations , 1995 .

[34]  Robert D. Franzosa The continuation theory for Morse decompositions and connection matrices , 1988 .

[35]  Marian Mrozek,et al.  Stable Index Pairs for Discrete Dynamical Systems , 1997, Canadian Mathematical Bulletin.

[36]  P. Pilarczyk COMPUTER ASSISTED METHOD FOR PROVING EXISTENCE OF PERIODIC ORBITS , 1999 .

[37]  Robert W. Easton,et al.  Isolating blocks and symbolic dynamics , 1975 .

[38]  M. Mrozek Index pairs and the fixed point index for semidynamical systems with discrete time , 1989 .

[39]  James F. Reineck Connecting orbits in one-parameter families of flows , 1988 .

[40]  Konstantin Mischaikow,et al.  Horseshoes and the conley index spectrum-II: the theorem is sharp , 1999 .

[41]  A. Szymczak A combinatorial procedure for finding isolating neighbourhoods and index pairs , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[42]  Konstantin Mischaikow,et al.  The Connection Matrix Theory for Semiflows on (Not Necessarily Locally Compact) Metric Spaces , 1988 .

[43]  D. Salamon CONNECTED SIMPLE SYSTEMS AND THE CONLEY INDEX OF ISOLATED INVARIANT SETS , 1985 .

[44]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[45]  R. Robinson,et al.  Stability theorems and hyperbolicity in dynamical systems , 1977 .

[46]  Robert D. Franzosa The connection matrix theory for Morse decompositions , 1989 .

[47]  Marian Mrozek,et al.  An Algorithmic Approach to the Conley Index Theory , 1999 .

[48]  Robert D. Franzosa,et al.  Index filtrations and the homology index braid for partially ordered Morse decompositions , 1986 .

[49]  Michael Dellnitz,et al.  Chapter 5 - Set Oriented Numerical Methods for Dynamical Systems , 2002 .

[50]  Marian Mrozek,et al.  Heteroclinic Connections in the Kuramoto-Sivashinsky Equation: a Computer Assisted Proof , 1997, Reliab. Comput..

[51]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[52]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[53]  Konstantin Mischaikow,et al.  Chaos in the Lorenz equations: A computer assisted proof. Part II: Details , 1998, Math. Comput..

[54]  Joel W. Robbin,et al.  Lyapunov maps, simplicial complexes and the Stone functor , 1992, Ergodic Theory and Dynamical Systems.

[55]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[56]  J. Robbin,et al.  Dynamical systems, shape theory and the Conley index , 1988, Ergodic Theory and Dynamical Systems.