Variational surface cutting

This paper develops a global variational approach to cutting curved surfaces so that they can be flattened into the plane with low metric distortion. Such cuts are a critical component in a variety of algorithms that seek to parameterize surfaces over flat domains, or fabricate structures from flat materials. Rather than evaluate the quality of a cut solely based on properties of the curve itself (e.g., its length or curvature), we formulate a flow that directly optimizes the distortion induced by cutting and flattening. Notably, we do not have to explicitly parameterize the surface in order to evaluate the cost of a cut, but can instead integrate a simple evolution equation defined on the cut curve itself. We arrive at this flow via a novel application of shape derivatives to the Yamabe equation from conformal geometry. We then develop an Eulerian numerical integrator on triangulated surfaces, which does not restrict cuts to mesh edges and can incorporate user-defined data such as importance or occlusion. The resulting cut curves can be used to drive distortion to arbitrarily low levels, and have a very different character from cuts obtained via purely discrete formulations. We briefly explore potential applications to computational design, as well as connections to space filling curves and the problem of uniform heat distribution.

[1]  Martin Kilian,et al.  Curved folding , 2008, ACM Trans. Graph..

[2]  Olga Sorkine-Hornung,et al.  Discrete Geodesic Nets for Modeling Developable Surfaces , 2017, ACM Trans. Graph..

[3]  Johannes Wallner,et al.  Interactive Design of Developable Surfaces , 2016, ACM Trans. Graph..

[4]  Leonidas J. Guibas,et al.  Shape Matching via Quotient Spaces , 2013 .

[5]  Olga Sorkine-Hornung,et al.  Shape Representation by Zippable Ribbons , 2017, ArXiv.

[6]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[7]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[8]  Lin He,et al.  Incorporating topological derivatives into shape derivatives based level set methods , 2007, J. Comput. Phys..

[9]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[11]  Craig Gotsman,et al.  On graph partitioning, spectral analysis, and digital mesh processing , 2003, 2003 Shape Modeling International..

[12]  Thierry Aubin,et al.  Some Nonlinear Problems in Riemannian Geometry , 1998 .

[13]  Henryk Gerlach,et al.  Rheinisch-westfälische Technische Hochschule Aachen on Sphere-filling Ropes , 2022 .

[14]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[15]  J. Cea Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût , 1986 .

[16]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[17]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[18]  Charlie C. L. Wang,et al.  Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches , 2004, The Visual Computer.

[19]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[20]  Xue-Cheng Tai,et al.  A Level Set Formulation of Geodesic Curvature Flow on Simplicial Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[21]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[22]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[23]  Kun Zhou,et al.  Iso-charts: stretch-driven mesh parameterization using spectral analysis , 2004, SGP '04.

[24]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[25]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[26]  Yu.F. Maydanik,et al.  Loop heat pipes , 2005 .

[27]  Marc Alexa,et al.  Error diffusion on meshes , 2015, Comput. Graph..

[28]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[29]  Karan Singh,et al.  Organic labyrinths and mazes , 2006, NPAR.

[30]  Mario Botsch,et al.  Adaptive Remeshing for Real-Time Mesh Deformation , 2013, Eurographics.

[31]  Giovanni Alberti,et al.  Uniform energy distribution for an isoperimetric problem with long-range interactions , 2008 .

[32]  Kelly Delp and Bill Thurston Playing With Surfaces: Spheres, Monkey Pants, and Zippergons , 2011 .

[33]  T. Asai,et al.  Effect of panel shape of soccer ball on its flight characteristics , 2014, Scientific Reports.

[34]  Alla Sheffer,et al.  Virtual Garments: A Fully Geometric Approach for Clothing Design , 2006, Comput. Graph. Forum.

[35]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[36]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[37]  Valerio Pascucci,et al.  Simple and Efficient Mesh Layout with Space-Filling Curves , 2012, J. Graph. Tools.

[38]  Keenan Crane,et al.  Optimal cone singularities for conformal flattening , 2018, ACM Trans. Graph..

[39]  J. Mitani,et al.  Making papercraft toys from meshes using strip-based approximate unfolding , 2004, SIGGRAPH 2004.

[40]  Rohan Sawhney,et al.  Boundary First Flattening , 2017, ACM Trans. Graph..

[41]  John C. Hart,et al.  Seamster: inconspicuous low-distortion texture seam layout , 2002, IEEE Visualization, 2002. VIS 2002..

[42]  Martin Isenburg,et al.  Streaming meshes , 2005, VIS 05. IEEE Visualization, 2005..

[43]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[44]  Olga Sorkine-Hornung,et al.  Autocuts: simultaneous distortion and cut optimization for UV mapping , 2017, ACM Trans. Graph..

[45]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[46]  Hans-Peter Seidel,et al.  Mesh segmentation driven by Gaussian curvature , 2005, The Visual Computer.

[47]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[48]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .