Mitochondria and Cancer

Mitochondria are bioenergetic, biosynthetic, and signaling organelles that are integral in stress sensing to allow for cellular adaptation to the environment. Therefore, it is not surprising that mitochondria are important mediators of tumorigenesis, as this process requires flexibility to adapt to cellular and environmental alterations in addition to cancer treatments. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation, including mitochondrial biogenesis and turnover, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. Thus, understanding mechanisms of mitochondrial function during tumorigenesis will be critical for the next generation of cancer therapeutics.

[1]  F. Sotgia,et al.  Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells , 2015, Oncotarget.

[2]  J. Asara,et al.  mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle , 2016, Science.

[3]  D. Bar-Sagi,et al.  RAS oncogenes: weaving a tumorigenic web , 2011, Nature Reviews Cancer.

[4]  C. Heeschen,et al.  MYC/PGC-1α Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. , 2015, Cell metabolism.

[5]  Alessandro Vespignani,et al.  ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation , 2009 .

[6]  Z. Ronai,et al.  Regulators of mitochondrial dynamics in cancer. , 2016, Current opinion in cell biology.

[7]  E. E. Vincent,et al.  The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. , 2015, Cancer letters.

[8]  E. Prochownik,et al.  Mitochondrial Structure, Function and Dynamics Are Temporally Controlled by c-Myc , 2012, PloS one.

[9]  Takashi Tsukamoto,et al.  Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. , 2012, Cell metabolism.

[10]  L. Scorrano,et al.  Extracellular Regulated Kinase Phosphorylates Mitofusin 1 to Control Mitochondrial Morphology and Apoptosis , 2015, Molecular cell.

[11]  L. Cantley,et al.  Regulation of mTORC1 by PI3K signaling. , 2015, Trends in cell biology.

[12]  J. Gronych,et al.  Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. , 2012, Cancer research.

[13]  A. Bode,et al.  The Role of PGC1α in Cancer Metabolism and its Therapeutic Implications , 2016, Molecular Cancer Therapeutics.

[14]  M. Cole,et al.  A Functional Screen for Myc-Responsive Genes Reveals Serine Hydroxymethyltransferase, a Major Source of the One-Carbon Unit for Cell Metabolism , 2002, Molecular and Cellular Biology.

[15]  R. Deberardinis,et al.  Oxidative stress inhibits distant metastasis by human melanoma cells , 2015, Nature.

[16]  U. Moll,et al.  The mitochondrial p53 pathway. , 2009, Biochimica et biophysica acta.

[17]  Peng Huang,et al.  Identification of NDUFAF1 in mediating K-Ras induced mitochondrial dysfunction by a proteomic screening approach , 2015, Oncotarget.

[18]  Gregory Stephanopoulos,et al.  The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4 , 2013, Cell.

[19]  K. Macleod,et al.  Mitophagy and cancer , 2015, Cancer & Metabolism.

[20]  John M. Asara,et al.  Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway , 2013, Nature.

[21]  Benjamin L. Ebert,et al.  (R)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible , 2013, Science.

[22]  J. Mancias,et al.  Mechanisms of Selective Autophagy in Normal Physiology and Cancer. , 2016, Journal of molecular biology.

[23]  M. Haigis,et al.  Sirtuins and the Metabolic Hurdles in Cancer , 2015, Current Biology.

[24]  Abhishek K. Jha,et al.  Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. , 2016, Cell metabolism.

[25]  Prashant Mishra,et al.  Metabolic regulation of mitochondrial dynamics , 2016, The Journal of cell biology.

[26]  Sejal Vyas,et al.  New PARP targets for cancer therapy , 2014, Nature Reviews Cancer.

[27]  Christian M. Metallo,et al.  Regulation of substrate utilization by the mitochondrial pyruvate carrier. , 2014, Molecular cell.

[28]  L. Scorrano,et al.  Mitochondria: from cell death executioners to regulators of cell differentiation. , 2014, Trends in cell biology.

[29]  W. Marston Linehan,et al.  Reductive carboxylation supports growth in tumor cells with defective mitochondria , 2011, Nature.

[30]  Zhandong Liu,et al.  Serine catabolism regulates mitochondrial redox control during hypoxia. , 2014, Cancer discovery.

[31]  M. Haigis,et al.  SIRT3 regulation of mitochondrial oxidative stress , 2013, Experimental Gerontology.

[32]  O. Larsson,et al.  mTOR coordinates protein synthesis, mitochondrial activity and proliferation , 2015, Cell cycle.

[33]  Ian A Blair,et al.  Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. , 2014, Cell metabolism.

[34]  Eyal Gottlieb,et al.  Oncometabolites: tailoring our genes , 2015, The FEBS journal.

[35]  Pier Paolo Pandolfi,et al.  Cancer metabolism: fatty acid oxidation in the limelight , 2013, Nature Reviews Cancer.

[36]  Lucas B. Sullivan,et al.  Mitochondrial reactive oxygen species and cancer , 2014, Cancer & Metabolism.

[37]  D. Sabatini,et al.  An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis , 2015, Cell.

[38]  M. Haigis,et al.  SIRT4 Protein Suppresses Tumor Formation in Genetic Models of Myc-induced B Cell Lymphoma* , 2013, The Journal of Biological Chemistry.

[39]  D. Henning Metabolism , 1972, Introduction to a Phenomenology of Life.

[40]  J. Rabinowitz,et al.  Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. , 2016, Cell metabolism.

[41]  T. Jacks,et al.  Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. , 2013, Genes & development.

[42]  Kakajan Komurov,et al.  Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma. , 2014, Cancer research.

[43]  D. Sabatini,et al.  SHMT2 drives glioma cell survival in the tumor microenvironment but imposes a dependence on glycine clearance , 2015 .

[44]  G. Semenza,et al.  HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. , 2007, Cancer cell.

[45]  P. Pandolfi,et al.  SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. , 2011, Cancer cell.

[46]  Jianxin Xie,et al.  A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. , 2014, Molecular cell.

[47]  V. Mootha,et al.  Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation , 2012, Science.

[48]  K. Aldape,et al.  Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. , 2016, Molecular cell.

[49]  S. Inoue,et al.  Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. , 2015, Cancer cell.

[50]  Peter Sorger,et al.  BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. , 2013, Molecular cell.

[51]  R. Deberardinis,et al.  The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. , 2013, Molecular cell.

[52]  Jessica E. S. Shay,et al.  Effects of hypoxia and HIFs on cancer metabolism , 2012, International Journal of Hematology.

[53]  E. Gottlieb,et al.  Cell-Permeating α-Ketoglutarate Derivatives Alleviate Pseudohypoxia in Succinate Dehydrogenase-Deficient Cells , 2007, Molecular and Cellular Biology.

[54]  J. Martinou,et al.  Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. , 2011, Developmental cell.

[55]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[56]  C. Taniguchi,et al.  Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma. , 2015, Cell reports.

[57]  D. Burk,et al.  On respiratory impairment in cancer cells. , 1956, Science.

[58]  K. Vousden,et al.  Metabolic Regulation by p53 Family Members , 2013, Cell metabolism.

[59]  Chi V. Dang,et al.  The interplay between MYC and HIF in cancer , 2008, Nature Reviews Cancer.

[60]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[61]  Eytan Ruppin,et al.  Glutamine Synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma , 2015, Nature Cell Biology.

[62]  R. Deberardinis,et al.  Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. , 2014, Molecular cell.

[63]  Kathryn A. O’Donnell,et al.  Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis , 2005, Molecular and Cellular Biology.

[64]  C. Allis,et al.  Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells , 2014, Nature.

[65]  S. Gygi,et al.  Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells. , 2016, Cell metabolism.

[66]  R. Verhaak,et al.  Transformation by the R Enantiomer of 2-Hydroxyglutarate Linked to EglN Activation , 2012, Nature.

[67]  J. Chipuk,et al.  Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. , 2015, Molecular cell.

[68]  Robert A. Egnatchik,et al.  Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. , 2015, Cancer cell.

[69]  O. Warburg On the origin of cancer cells. , 1956, Science.

[70]  R. Kalluri,et al.  Corrigendum: PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis , 2014, Nature Cell Biology.

[71]  A. Giaccia,et al.  Analysis of p53 transactivation domain mutants reveals Acad11 as a metabolic target important for p53 pro-survival function. , 2015, Cell reports.

[72]  P. Carmeliet,et al.  Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling , 2011, Cancer cell.

[73]  L. Ernster,et al.  Mitochondria: a historical review , 1981, The Journal of cell biology.

[74]  L. Guarente,et al.  SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production , 2011, Oncogene.

[75]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[76]  O. Warburg On respiratory impairment in cancer cells. , 1956, Science.

[77]  H. Coller,et al.  Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. , 2011, Genes & development.

[78]  Robert V Farese,et al.  Cellular fatty acid metabolism and cancer. , 2013, Cell metabolism.

[79]  R. Kalluri,et al.  PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation to promote metastasis , 2014, Nature Cell Biology.

[80]  John M. Asara,et al.  Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function , 2014, Nature.

[81]  Jun S. Song,et al.  Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. , 2013, Cancer cell.

[82]  T. Horvath,et al.  Mitochondrial ROS Signaling in Organismal Homeostasis , 2015, Cell.

[83]  M. Bergo,et al.  Antioxidants can increase melanoma metastasis in mice , 2015, Science Translational Medicine.

[84]  J. C. Ghosh,et al.  Adaptive mitochondrial reprogramming and resistance to PI3K therapy. , 2015, Journal of the National Cancer Institute.

[85]  M. V. Heiden,et al.  Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells , 2015, Cell.

[86]  Martin L. Miller,et al.  Mitochondrial DNA copy number variation across human cancers , 2015, bioRxiv.

[87]  C. Thompson,et al.  The Emerging Hallmarks of Cancer Metabolism. , 2016, Cell metabolism.

[88]  V. Mootha,et al.  Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer , 2014, Nature Communications.

[89]  Omar Abdel-Wahab,et al.  The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. , 2010, Cancer cell.

[90]  T. Copetti,et al.  A mitochondrial switch promotes tumor metastasis. , 2014, Cell reports.

[91]  C. Taniguchi,et al.  Erratum to Suppression of PGC-1a Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma [Cell Reports, 12, 2015, 116-127] , 2015 .

[92]  S. Berger,et al.  IDH mutation impairs histone demethylation and results in a block to cell differentiation , 2012, Nature.

[93]  P. Lambin,et al.  How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. , 2015, Mutation research. Reviews in mutation research.

[94]  Y. Kitagishi,et al.  Functions and characteristics of PINK1 and Parkin in cancer. , 2015, Frontiers in bioscience.

[95]  K. Hoehn,et al.  Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. , 2015, Molecular cell.

[96]  S. Tait,et al.  Mitochondrial apoptosis: killing cancer using the enemy within , 2015, British Journal of Cancer.

[97]  D. Newmeyer,et al.  Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. , 2015, Molecular cell.

[98]  F. Sotgia,et al.  Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition , 2014, Oncotarget.

[99]  F. Polleux,et al.  AMP-activated protein kinase mediates mitochondrial fission in response to energy stress , 2016, Science.

[100]  V. Potter,et al.  Studies on the Pasteur effect. I. General observations. , 1957, The Journal of biological chemistry.

[101]  C. Dang,et al.  MYC, Metabolism, and Cancer. , 2015, Cancer discovery.

[102]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[103]  A. Rosenwald,et al.  A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer. , 2015, Cancer cell.

[104]  Laurence A. Turka,et al.  Cancer-Associated PTEN Mutants Act in a Dominant-Negative Manner to Suppress PTEN Protein Function , 2014, Cell.

[105]  Christian M. Metallo,et al.  Reductive carboxylation supports redox homeostasis during anchorage-independent growth , 2016, Nature.