A 5/2 n2-Lower Bound for the Rank of n×n Matrix Multiplication over Arbitrary Fields

We prove a lower bound of 5/2n/sup 2/-3n for the rank of n/spl times/n-matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.

[1]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[2]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[3]  Hans F. de Groote On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings I. The Isotropy Group of a Bilinear Mapping , 1978, Theor. Comput. Sci..

[4]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[5]  Markus Bläser Untere Schranken für den Rang assoziativer Algebren , 1999 .

[6]  Jacques Morgenstern,et al.  On associative algebras of minimal rank , 1984, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.

[7]  Volker Strassen,et al.  On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..

[8]  David P. Dobkin,et al.  On the optimal evaluation of a set of bilinear forms , 1973, SWAT.

[9]  V. Pan METHODS OF COMPUTING VALUES OF POLYNOMIALS , 1966 .

[10]  Nader H. Bshouty A lower bound for matrix multiplication , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[11]  Hans F. de Groote Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.

[12]  Markus Bläser Lower bounds for the multiplicative complexity of matrix multiplication , 1999, computational complexity.

[13]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.