A 5/2 n2-Lower Bound for the Rank of n×n Matrix Multiplication over Arbitrary Fields
暂无分享,去创建一个
[1] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[2] V. Strassen. Rank and optimal computation of generic tensors , 1983 .
[3] Hans F. de Groote. On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings I. The Isotropy Group of a Bilinear Mapping , 1978, Theor. Comput. Sci..
[4] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[5] Markus Bläser. Untere Schranken für den Rang assoziativer Algebren , 1999 .
[6] Jacques Morgenstern,et al. On associative algebras of minimal rank , 1984, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.
[7] Volker Strassen,et al. On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..
[8] David P. Dobkin,et al. On the optimal evaluation of a set of bilinear forms , 1973, SWAT.
[9] V. Pan. METHODS OF COMPUTING VALUES OF POLYNOMIALS , 1966 .
[10] Nader H. Bshouty. A lower bound for matrix multiplication , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[11] Hans F. de Groote. Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.
[12] Markus Bläser. Lower bounds for the multiplicative complexity of matrix multiplication , 1999, computational complexity.
[13] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.