Anytime automatic algorithm selection for knapsack

Abstract In this paper, we present a new approach for Automatic Algorithm Selection. In this new procedure, we feed the predictor of the best algorithm choice with a runtime limit for the solvers. Hence, the machine learning model should consider and learn from the Anytime Behavior of the solvers, together with features characterizing each instance. For this purpose, we propose a general Framework and apply it to the Knapsack problem. Thus, we created a large and diverse dataset of 15 , 000 instances, recorded the anytime behavior of 8 solvers on them and trained and tested three machine learning strategies, collecting the results for different machine learning algorithms. Our results show that, for the majority of the tuples instance, time > , the solver that computes the best objective value can be predicted. We also make this data publicly available, as a challenge for the community to work in this problem and propose new and better machine learning models and solvers.

[1]  Roland Ewald,et al.  Automatic Algorithm Selection for Complex Simulation Problems , 2011, Vieweg+Teubner Verlag.

[2]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[3]  P. Kolesar A Branch and Bound Algorithm for the Knapsack Problem , 1967 .

[4]  Dorit S. Hochbaum,et al.  Efficient algorithms to discover alterations with complementary functional association in cancer , 2018, RECOMB.

[5]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[6]  Marius Thomas Lindauer,et al.  AutoFolio: An Automatically Configured Algorithm Selector , 2015, J. Artif. Intell. Res..

[7]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[8]  David Pisinger,et al.  An expanding-core algorithm for the exact 0-1 knapsack problem , 1995 .

[9]  J. Friedman Stochastic gradient boosting , 2002 .

[10]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[11]  Lars Kotthoff,et al.  An evaluation of machine learning in algorithm selection for search problems , 2012, AI Commun..

[12]  Adil Baykasoglu,et al.  An improved firefly algorithm for solving dynamic multidimensional knapsack problems , 2014, Expert Syst. Appl..

[13]  Mario A. Muñoz,et al.  The Algorithm Selection Problem on the Continuous Optimization Domain , 2013 .

[14]  Yuri Malitsky,et al.  Algorithm Selection and Scheduling , 2011, CP.

[15]  Gayatri Nayak,et al.  Modified condition decision coverage criteria for test suite prioritization using particle swarm optimization , 2019, Int. J. Intell. Comput. Cybern..

[16]  David Pisinger,et al.  Where are the hard knapsack problems? , 2005, Comput. Oper. Res..

[17]  Heike Trautmann,et al.  Automated Algorithm Selection: Survey and Perspectives , 2018, Evolutionary Computation.

[18]  Yoav Shoham,et al.  Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.

[19]  Marius Thomas Lindauer,et al.  claspfolio 2: Advances in Algorithm Selection for Answer Set Programming , 2014, Theory and Practice of Logic Programming.

[20]  Kevin Leyton-Brown,et al.  Algorithm runtime prediction: Methods & evaluation , 2012, Artif. Intell..

[21]  Michèle Sebag,et al.  Alors: An algorithm recommender system , 2017, Artif. Intell..

[22]  Paolo Toth,et al.  Upper Bounds and Algorithms for Hard 0-1 Knapsack Problems , 1997, Oper. Res..

[23]  Dorit S. Hochbaum,et al.  A comparative study of the leading machine learning techniques and two new optimization algorithms , 2019, Eur. J. Oper. Res..

[24]  Yuri Malitsky,et al.  Deep Learning for Algorithm Portfolios , 2016, AAAI.

[25]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[26]  Kate Smith-Miles,et al.  Measuring instance difficulty for combinatorial optimization problems , 2012, Comput. Oper. Res..

[27]  Heike Trautmann,et al.  Improving the State of the Art in Inexact TSP Solving Using Per-Instance Algorithm Selection , 2015, LION.

[28]  Adil Baykasoglu,et al.  A swarm intelligence-based algorithm for the set-union knapsack problem , 2019, Future Gener. Comput. Syst..

[29]  Eric A. Hansen,et al.  Anytime Heuristic Search , 2011, J. Artif. Intell. Res..

[30]  Kate Smith-Miles,et al.  Towards insightful algorithm selection for optimisation using meta-learning concepts , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[31]  Patrick De Causmaecker,et al.  An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem , 2014, Eur. J. Oper. Res..

[32]  Yuri Malitsky,et al.  DASH: Dynamic Approach for Switching Heuristics , 2013, Eur. J. Oper. Res..

[33]  William H. Hsu,et al.  A machine learning approach to algorithm selection for $\mathcal{NP}$ -hard optimization problems: a case study on the MPE problem , 2007, Ann. Oper. Res..

[34]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[35]  Bernd Bischl,et al.  ASlib: A benchmark library for algorithm selection , 2015, Artif. Intell..

[36]  Patrícia Duarte de Lima Machado,et al.  Test case prioritization techniques for model-based testing: a replicated study , 2017, Software Quality Journal.

[37]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[38]  Yuri Malitsky,et al.  MaxSAT by Improved Instance-Specific Algorithm Configuration , 2014, AAAI.

[39]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[40]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[41]  A. R. Meyer,et al.  Handbook of Theoretical Computer Science: Algorithms and Complexity , 1990 .

[42]  Carlos Soares,et al.  A Comparison of Ranking Methods for Classification Algorithm Selection , 2000, ECML.

[43]  Wenbo Xu,et al.  Solving the Hard Knapsack Problems with a Binary Particle Swarm Approach , 2006, ICIC.

[44]  Heike Trautmann,et al.  Leveraging TSP Solver Complementarity through Machine Learning , 2018, Evolutionary Computation.

[45]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[46]  Lars Kotthoff,et al.  Algorithm Selection for Combinatorial Search Problems: A Survey , 2012, AI Mag..