A Social Formalism and Survey for Recommender Systems

This paper presents a general formalism for Recommender Systems based on Social Network Analysis. After introducing the classical categories of recommender systems, we present our Social Filtering formalism and show that it extends association rules, classical Collaborative Filtering and Social Recommendation, while providing additional possibilities. This allows us to survey the literature and illustrate the versatility of our approach on various publicly available datasets, comparing our results with the literature.

[1]  Joung Woo Ryu,et al.  A Collaborative Recommendation Based on Neural Networks , 2004, DASFAA.

[2]  Jimeng Sun,et al.  Neighborhood formation and anomaly detection in bipartite graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[3]  Daniel Lemire,et al.  Slope One Predictors for Online Rating-Based Collaborative Filtering , 2007, SDM.

[4]  Matthew Richardson,et al.  Mining knowledge-sharing sites for viral marketing , 2002, KDD.

[5]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[6]  Michael R. Lyu,et al.  Learning to recommend with social trust ensemble , 2009, SIGIR.

[7]  Mamadou Diaby,et al.  Toward the next generation of recruitment tools: An online social network-based job recommender system , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[8]  Chao Liu,et al.  Recommender systems with social regularization , 2011, WSDM '11.

[9]  Shivakant Mishra,et al.  Enhancing group recommendation by incorporating social relationship interactions , 2010, GROUP.

[10]  Guy Shani,et al.  Evaluating Recommendation Systems , 2011, Recommender Systems Handbook.

[11]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[12]  Inmar E. Givoni,et al.  An Online Social Network-based Recommendation System , 2007 .

[13]  Zahir Tari,et al.  On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE , 2004, Lecture Notes in Computer Science.

[14]  Martin Ester,et al.  A matrix factorization technique with trust propagation for recommendation in social networks , 2010, RecSys '10.

[15]  D. Wilkinson,et al.  Social Network Collaborative Filtering , 2008 .

[16]  Georg Lausen,et al.  Propagation Models for Trust and Distrust in Social Networks , 2005, Inf. Syst. Frontiers.

[17]  Tina Eliassi-Rad,et al.  Measuring tie strength in implicit social networks , 2011, WebSci '12.

[18]  Danah Boyd,et al.  Social Network Sites: Definition, History, and Scholarship , 2007, J. Comput. Mediat. Commun..

[19]  James Bennett,et al.  The Netflix Prize , 2007 .

[20]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[21]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[22]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[23]  Yi-Cheng Zhang,et al.  Bipartite network projection and personal recommendation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Gerhard Friedrich,et al.  Recommender Systems - An Introduction , 2010 .

[25]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[26]  Karl Aberer,et al.  A Probabilistic Approach to Predict Peers? Performance in P2P Networks , 2004, CIA.

[27]  Ramanathan V. Guha,et al.  Propagation of trust and distrust , 2004, WWW '04.

[28]  Christian Borgelt,et al.  Frequent item set mining , 2012, WIREs Data Mining Knowl. Discov..

[29]  Zhonghang Xia,et al.  Support vector machines for collaborative filtering , 2006, ACM-SE 44.

[30]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[31]  Ying Tan,et al.  A New Collaborative Filtering Recommendation Approach Based on Naive Bayesian Method , 2011, ICSI.

[32]  Jennifer Golbeck,et al.  Computing and Applying Trust in Web-based Social Networks , 2005 .

[33]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[34]  J. Bobadilla,et al.  Recommender systems survey , 2013, Knowl. Based Syst..

[35]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[36]  Haesun Park,et al.  Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons , 2011, SIAM J. Sci. Comput..

[37]  Anindya Ghose,et al.  Social Network Collaborative Filtering: Preliminary Results , 2007 .

[38]  Wesley W. Chu,et al.  A Social Network-Based Recommender System (SNRS) , 2010, Data Mining for Social Network Data.

[39]  Barry Smyth,et al.  Trust in recommender systems , 2005, IUI.

[40]  Paolo Avesani,et al.  A trust-enhanced recommender system application: Moleskiing , 2005, SAC '05.

[41]  Bradley N. Miller,et al.  MovieLens unplugged: experiences with an occasionally connected recommender system , 2003, IUI '03.

[42]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[43]  John Riedl,et al.  Collaborative Filtering Recommender Systems , 2011, Found. Trends Hum. Comput. Interact..

[44]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[45]  Maurice Tchuente,et al.  Local Community Identification in Social Networks , 2012, Parallel Process. Lett..

[46]  Ido Guy,et al.  Personalized social search based on the user's social network , 2009, CIKM.

[47]  Deepak Agarwal,et al.  Regression-based latent factor models , 2009, KDD.

[48]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[49]  Min Zhao,et al.  Probabilistic latent preference analysis for collaborative filtering , 2009, CIKM.

[50]  Mamadou Diaby,et al.  Exploration of methodologies to improve job recommender systems on social networks , 2014, Social Network Analysis and Mining.

[51]  Rashmi R. Sinha,et al.  Comparing Recommendations Made by Online Systems and Friends , 2001, DELOS.

[52]  Blaise Ngonmang,et al.  Monetization and Services on a Real Online Social Network Using Social Network Analysis , 2013, 2013 IEEE 13th International Conference on Data Mining Workshops.

[53]  Lada A. Adamic,et al.  Recipe recommendation using ingredient networks , 2011, WebSci '12.

[54]  Chun Chen,et al.  An exploration of improving collaborative recommender systems via user-item subgroups , 2012, WWW.

[55]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[56]  Luis M. de Campos,et al.  A collaborative recommender system based on probabilistic inference from fuzzy observations , 2008, Fuzzy Sets Syst..

[57]  Matthew Richardson,et al.  Trust Management for the Semantic Web , 2003, SEMWEB.

[58]  Céline Rouveirol,et al.  A case study in a recommender system based on purchase data , 2011, KDD.

[59]  Huan Liu,et al.  Social recommendation: a review , 2013, Social Network Analysis and Mining.

[60]  Fabio Aiolli,et al.  Efficient top-n recommendation for very large scale binary rated datasets , 2013, RecSys.

[61]  Paolo Avesani,et al.  Trust-Aware Collaborative Filtering for Recommender Systems , 2004, CoopIS/DOA/ODBASE.

[62]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[63]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[64]  Sanjeev R. Kulkarni,et al.  Wisdom of the Crowd: Incorporating Social Influence in Recommendation Models , 2011, 2011 IEEE 17th International Conference on Parallel and Distributed Systems.

[65]  Bart Goethals,et al.  Unifying nearest neighbors collaborative filtering , 2014, RecSys '14.

[66]  Roger Guimerà,et al.  Module identification in bipartite and directed networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Chun-Xia Yin,et al.  Improving Personal Product Recommendation via Friendships’ Expansion , 2013 .