Action graphs and coverings

An action graph is a combinatorial representation of a group acting on a set. Comparing two group actions by an epimorphism of actions induces a covering projection of the respective graphs. This simple observation generalizes and unifies many well-known results in graph theory, with applications ranging from the theory of maps on surfaces and group presentations to theoretical computer science, among others. Reconstruction of action graphs from smaller ones is considered, some results on lifting and projecting the equivariant group of automorphisms are proved, and a special case of the split-extension structure of lifted groups is studied. Action digraphs in connection with group presentations are also discussed.

[1]  M. Hofmeister,et al.  Isomorphisms and automorphisms of graph coverings , 1991, Discret. Math..

[2]  David B. Surowski Lifting map automorphisms and MacBeath's theorem , 1990, J. Comb. Theory, Ser. B.

[3]  Martin Skoviera,et al.  Quotients of connected regular graphs of even degree , 1985, J. Comb. Theory, Ser. B.

[4]  P. M. Neumann,et al.  Groups and Geometry , 1994 .

[5]  J. Kwak,et al.  Isomorphism Classes of Graph Bundles , 1990, Canadian Journal of Mathematics.

[6]  Jozef Širáň,et al.  Characterisation of Graphs which Underlie Regular Maps on Closed Surfaces , 1999 .

[7]  Sheldon B. Akers,et al.  On Group Graphs and Their Fault Tolerance , 1987, IEEE Transactions on Computers.

[8]  Norman Biggs,et al.  Homological Coverings of Graphs , 1984 .

[9]  Adalbert Kerber,et al.  Group Actions, Double Cosets, and Homomorphisms: Unifying Concepts for the Constructive Theory of Discrete Structures , 1998 .

[10]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[11]  John J. Cannon Construction of defining relators for finite groups , 1973, Discret. Math..

[12]  Jozef Širáň,et al.  Constructing and forbidding automorphisms in lifted maps , 1997 .

[13]  Roman Nedela,et al.  Exponents of orientable maps , 1997 .

[14]  Heiner Zieschang,et al.  Surfaces and Planar Discontinuous Groups , 1980 .

[15]  D. Singerman,et al.  FOUNDATIONS OF THE THEORY OF MAPS ON SURFACES WITH BOUNDARY , 1985 .

[16]  László Babai Some applications of graph contractions , 1977, J. Graph Theory.

[17]  Jixiang Meng,et al.  Automorphisms of groups and isomorphisms of Cayley digraphs , 1995, Australas. J Comb..

[18]  Arnold L. Rosenberg,et al.  Group Action Graphs and Parallel Architectures , 1990, SIAM J. Comput..

[19]  Charles C. Sims,et al.  Computation with finitely presented groups , 1994, Encyclopedia of mathematics and its applications.

[20]  Marie-Claude Heydemann,et al.  Cayley graphs and interconnection networks , 1997 .

[21]  A. White Graphs, Groups and Surfaces , 1973 .

[22]  A. M. Macbeath,et al.  On a Theorem of Hurwitz , 1961, Proceedings of the Glasgow Mathematical Association.

[23]  H. Weyl Permutation Groups , 2022 .

[24]  M. Hofmeister Graph covering projections arising from finite vector spaces over finite fields , 1995, Discret. Math..

[25]  W. Magnus,et al.  Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations , 1966 .

[26]  Aleksander Malnic,et al.  Group actions, coverings and lifts of automorphisms , 1998, Discret. Math..

[27]  Dragan Marusic,et al.  Constructing 4-Valent 1/2-Transitive Graphs with a Nonsolvable Automorphism Group , 1999, J. Comb. Theory, Ser. B.

[28]  Sóstenes Lins Graph-encoded maps , 1982, J. Comb. Theory, Ser. B.

[29]  ALEKSANDER MALNI,et al.  Regular Homomorphisms and Regular Maps , 2000 .

[30]  Mirka Miller,et al.  Large graphs with small degree and diameter: a voltage assignment approach , 1998, Australas. J Comb..

[31]  Martin Skoviera,et al.  Which generalized petersen graphs are cayley graphs? , 1995, J. Graph Theory.

[32]  Tomaz Pisanski,et al.  Strongly adjacency-transitive graphs and uniquely shift-transitive graphs , 2002, Discret. Math..

[33]  G. Jones,et al.  Theory of Maps on Orientable Surfaces , 1978 .

[34]  J. Dixon,et al.  Permutation Groups , 1996 .

[35]  Jin Ho Kwak,et al.  Isomorphism Classes of Concrete Graph Coverings , 1998, SIAM J. Discret. Math..

[36]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[37]  G. Hahn,et al.  Graph homomorphisms: structure and symmetry , 1997 .

[38]  Ginette Gauyacq Routages uniformes dans les graphes sommet-transitifs , 1995 .

[39]  Martin Skoviera,et al.  Branched coverings of maps and lifts of map homomorphisms , 1994, Australas. J Comb..

[40]  Jozef Sirán,et al.  Regular maps from voltage assignments , 1991, Graph Structure Theory.

[41]  Norbert Seifter,et al.  Automorphism Groups of Covering Graphs , 1997, J. Comb. Theory, Ser. B.

[42]  Chris D. Godsil,et al.  On the full automorphism group of a graph , 1981, Comb..

[43]  Martin Skoviera,et al.  Lifting Graph Automorphisms by Voltage Assignments , 2000, Eur. J. Comb..

[44]  Gareth A. Jones,et al.  Operations on maps, and outer automorphisms , 1983, J. Comb. Theory, Ser. B.