Parallel solvers for discrete‐time algebric Riccati equations

We investigate the numerical solution of discrete‐time algebraic Riccati equations on a parallel distributed architecture. Our solvers obtain an initial solution of the Riccati equation via the disc function method, and then refine this solution using Newton's method. The Smith iteration is employed to solve the Stein equation that arises at each step of Newton's method. The numerical experiments on an Intel Pentium‐II cluster, connected via a Myrinet switch, report the performance and scalability of the new algorithms. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  James Demmel,et al.  The Spectral Decomposition of Nonsymmetric Matrices on Distributed Memory Parallel Computers , 1997, SIAM J. Sci. Comput..

[2]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .

[3]  A. J. Laub,et al.  Solving the algebraic Riccati equation on a hypercube multiprocessor , 1989, C3P.

[4]  Enrique S. Quintana-Ortí,et al.  Solving algebraic Riccati equations on parallel computers using Newton's method with exact line search , 2000, Parallel Comput..

[5]  A. Malyshev Parallel Algorithm for Solving Some Spectral Problems of Linear Algebra , 1993 .

[6]  Enrique S. Quintana-Ortí,et al.  Solving Stable Stein Equations on Distributed Memory Computers , 1999, Euro-Par.

[7]  I. Rosen,et al.  A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations , 1995 .

[8]  Alan J. Laub,et al.  Advanced Computing Concepts and Techniques in Control Engineering , 1988, NATO ASI Series.

[9]  Jack J. Dongarra,et al.  Implementation of some concurrent algorithms for matrix factorization , 1986, Parallel Comput..

[10]  A. Barraud A numerical algorithm to solve AT X A - X = Q , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[11]  Ruth F. Curtain,et al.  Model reduction for control design for distributed parameter systems , 2003 .

[12]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[13]  R. Y. Chiang,et al.  Model Reduction for Robust Control: A Schur Relative-Error Method , 1988, 1988 American Control Conference.

[14]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[15]  Enrique Salvador Quintana Ortí Algoritmos paralelos para resolver ecuaciones matriciales de Riccati en problemas de control , 1997 .

[16]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[17]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[18]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[19]  A. J. Laub,et al.  Hypercube implementation of some parallel algorithms in control , 1988 .

[20]  Robert A. van de Geijn,et al.  Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..

[21]  G. Hewer An iterative technique for the computation of the steady state gains for the discrete optimal regulator , 1971 .

[22]  Jack J. Dongarra,et al.  A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures , 2002, SIAM J. Sci. Comput..

[23]  D. Kleinman On an iterative technique for Riccati equation computations , 1968 .

[24]  David S. Watkins,et al.  Chasing algorithms for the eigenvalues problem , 1991 .

[25]  J. Demmel,et al.  An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .