Smith ScholarWorks Smith ScholarWorks

CTB interval in this part of the Tethyan realm. Local and regional synsedimentary tectonics combined with global upper Cretaceous sea-level dynamics allows the correlation of the investigated deeper-marine lithostratigraphic units with OAE2.

[1]  J. Jež,et al.  Siphodinarella costata n. gen., n. sp., a new benthic foraminifer from the Coniacian of the Adriatic Carbonate Platform (Slovenia, Croatia) , 2014, Facies.

[2]  I. Jarvis,et al.  Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2 , 2014 .

[3]  B. Haq Cretaceous eustasy revisited , 2014 .

[4]  M. Parente,et al.  Broeckina gassoensis sp. nov., a larger foraminiferal index fossil for the middle Coniacian shallow-water deposits of the Pyrenean Basin (NE Spain) , 2013 .

[5]  Philip L. Gibbard,et al.  The ICS International Chronostratigraphic Chart , 2013 .

[6]  F. Hilgen,et al.  On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.

[7]  T. Korbar,et al.  Response of a Carbonate Platform to the Cenomanian–Turonian Drowning and OAE 2: A Case Study from the Adriatic Platform (Dalmatia, Croatia) , 2012 .

[8]  S. Hasiotis,et al.  RESPONSE OF TRACEMAKERS TO TEMPORARY PLATFORM DROWNING: LOWER CENOMANIAN OF SOUTHERN ISTRIA (WESTERN CROATIA) , 2011 .

[9]  I. Jarvis,et al.  Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event , 2011 .

[10]  A. Oschlies,et al.  Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2) , 2011 .

[11]  A. Strasser,et al.  Carbon- and oxygen-isotope records of palaeoenvironmental and carbonate production changes in shallow-marine carbonates (Kimmeridgian, Swiss Jura) , 2010, Geological Magazine.

[12]  H. Jenkyns Geochemistry of oceanic anoxic events , 2010 .

[13]  I. Jarvis,et al.  The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: New insights from the dinocyst and geochemical records , 2009 .

[14]  R. Duncan,et al.  C-isotope stratigraphy and paleoenvironmental changes across OAE2 (mid-Cretaceous) from shallow-water platform carbonates of southern Mexico , 2009 .

[15]  G. Keller Cretaceous climate, volcanism, impacts, and biotic effects , 2008 .

[16]  M. Wagreich,et al.  Calcareous nannoplankton, planktonic foraminiferal, and carbonate carbon isotope stratigraphy of the Cenomanian–Turonian boundary section in the Ultrahelvetic Zone (Eastern Alps, Upper Austria) , 2008 .

[17]  J. Ogg,et al.  The Concise Geologic Time Scale , 2008 .

[18]  S. Turgeon,et al.  Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode , 2008, Nature.

[19]  Timothy J. Bralower,et al.  Earth science: Volcanic cause of catastrophe , 2008, Nature.

[20]  T. Westerhold,et al.  The Cenomanian - Turonian of the Wunstorf section - (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2 , 2008 .

[21]  J. Damsté,et al.  First evidence for the Cenomanian–Turonian oceanic anoxic event (OAE2, ‘Bonarelli’ event) from the Ionian Zone, western continental Greece , 2007 .

[22]  A. Gale,et al.  Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis , 2006 .

[23]  I. Jarvis,et al.  Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma) , 2006, Geological Magazine.

[24]  B. Sageman,et al.  Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype , 2006 .

[25]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.

[26]  R. Coccioni,et al.  Planktonic foraminifers across the Bonarelli Event (OAE2, latest Cenomanian): The Italian record , 2005 .

[27]  I. Velić,et al.  Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics , 2005 .

[28]  W. Kuhnt,et al.  Foraminiferal response to sea level change, organic flux and oxygen deficiency in the Cenomanian of the Tarfaya Basin, southern Morocco , 2004 .

[29]  Erik Flügel,et al.  Microfacies of Carbonate Rocks: Analysis, Interpretation and Application , 2004 .

[30]  G. Keller,et al.  Cenomanian–Turonian and δ13C, and δ18O, sea level and salinity variations at Pueblo, Colorado , 2004 .

[31]  E. Erba Calcareous nannofossils and Mesozoic oceanic anoxic events , 2004 .

[32]  M. Petrizzo,et al.  Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications based on three key localities , 2004, Journal of the Geological Society.

[33]  Vlasta Čosović,et al.  Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula) , 2004 .

[34]  W. Schlager Benthic carbonate factories of the Phanerozoic , 2003 .

[35]  Branko Sokač,et al.  Carbonate Platform Megafacies of the Jurassic and Cretaceous Deposits of the Karst Dinarides , 2002, Geologia Croatica.

[36]  E. Erba,et al.  Onset of the Mid‐Cretaceous greenhouse in the Barremian‐Aptian: Igneous events and the biological, sedimentary, and geochemical responses , 1999 .

[37]  R. Leckie,et al.  Foraminiferal assemblage and stable isotopic change across the Cenomanian-Turonian boundary in the subtropical North Atlantic , 1999 .

[38]  I. Velić,et al.  Carbonate facies evolution from the late albian to Middle Cenomanian in Southern Istria (Croatia): influence of synsedimentary tectonics and extensive organic carbonate production , 1998 .

[39]  H. Barnes,et al.  THE SIZE DISTRIBUTION OF FRAMBOIDAL PYRITE IN MODERN SEDIMENTS : AN INDICATOR OF REDOX CONDITIONS , 1996 .

[40]  S. Voigt,et al.  Shallow water facies during the Cenomanian-Turonian anoxic event: bio-events, isotopes, and sea level in southern Germany , 1996 .

[41]  A. Amorosi Glaucony and Sequence Stratigraphy: A Conceptual Framework of Distribution in Siliciclastic Sequences , 1995 .

[42]  Dubravko Matičec Neotectonic Deformations in Western Istria, Croatia , 1994 .

[43]  I. Velić,et al.  Foraminiferal Assemblages in the Cenomanian of the Buzet-Savudrija Area (Northwestern Istria, Croatia) , 1994 .

[44]  I. Gušić,et al.  Upper Cenomanian-lower Turonian sea-level rise and its consequences on the Adriatic-Dinaric carbonate platform , 1993 .

[45]  P. Hallock,et al.  Upper Cretaceous Stratigraphy of the Island of Brac within the Geodynamic Evolution of the Adriatic Carbonate Platform , 1992 .

[46]  H. Jenkyns Impact of Cretaceous sea level rise and anoxic events on the Mesozoic carbonate platform of Yugoslavia , 1991 .

[47]  C. Glenn,et al.  Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt , 1990 .

[48]  D. Fanning,et al.  Oxidation State of Iron in Glauconite from Oxidized and Reduced Zones of Soil-Geologic Columns , 1989 .

[49]  W. Dean,et al.  Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary , 1988, Nature.

[50]  M. K. E. Cooper,et al.  Microfossil Assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event , 1988 .

[51]  R. Berner,et al.  Sulphate reduction, organic matter decomposition and pyrite formation , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[52]  P. Homewood,et al.  Evolution of early planktic foraminifers , 1983 .

[53]  R. Matthews,et al.  Isotope signatures associated with early meteoric diagenesis , 1982 .

[54]  A. Matter,et al.  De glauconiarum origine , 1981 .

[55]  J. Pupin Zircon and granite petrology , 1980 .

[56]  H. Jenkyns Cretaceous anoxic events: from continents to oceans , 1980, Journal of the Geological Society.

[57]  C. Conrad,et al.  Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous , 2016 .

[58]  Emad Nagm Stratigraphic significance of rapid faunal change across the Cenomanian–Turonian boundary in the Eastern Desert, Egypt , 2015 .

[59]  A. A. Tantawy,et al.  Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt , 2010 .

[60]  H. Tsikos,et al.  A Review of Oceanic Anoxic Events as recorded in the Mesozoic sedimentary record of mainland Greece* , 2010 .

[61]  I. Velić,et al.  The Origin and Importance of the Dolomite-Limestone Breccia Between the Lower and Upper Cretaceous Deposits of the Adriatic Carbonate Platform: An Example from Ćićarija Mt. (Istria, Croatia) , 2002, Geologia Croatica.

[62]  P. Rawson,et al.  Biotic response to global change : the last 145 million years , 2000 .

[63]  Martin B. Farley,et al.  Mesozoic and Cenozoic Sequence Chronostratigraphic Framework of European Basins , 1998 .

[64]  I. Velić,et al.  Eocene Limestones Overlying Lower Cretaceous Deposits of Western lstria (Croatia): Did Some Parts of Present lstria Form Land During the Cretaceous? , 1996 .

[65]  I. Velić,et al.  Influence of synsedimentary tectonics and eustatic changes on deposition of the Cenomanian platform carbonates in Istria (Western Croatia) , 1994 .

[66]  I. Velić,et al.  Facies diversity of the Malmian platform carbonates in Western Croatia as a consequence of synsedimentary tectonics , 1994 .

[67]  H. Brumsack,et al.  Stratigraphy, Geochemistry, and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences , 1990 .

[68]  H. Jenkyns,et al.  The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation , 1987, Geological Society, London, Special Publications.

[69]  G. Teodorovich Authigenic minerals in sedimentary rocks , 1961 .