On the convergence of the Bermúdez-Moreno algorithm with constant parameters
暂无分享,去创建一个
[1] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[2] A. Bermúdez,et al. Numerical solution of cavitation problems in lubrication , 1989 .
[3] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[4] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[5] J. Durany,et al. Numerical computation of free boundary problems in elastohydrodynamic lubrication , 1996 .
[6] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[7] A. Pazy,et al. On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space , 1977 .
[8] M. A. Vilar,et al. Solving Shallow Water Equations by a Mixed Implicit Finite Element Method , 1991 .
[9] Carlos Parés,et al. Improvement and generalization of a finite element shallow-water solver to multi-layer systems , 1999 .
[10] Olivier Pironneau. Méthodes des éléments finis pour les fluides , 1989 .
[11] Numerical solution of steady-state flow through a porous dam , 1988 .
[12] R. Glowinski. Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .
[13] A. Bermúdez,et al. Duality methods for solving variational inequalities , 1981 .
[14] Carlos Par,et al. Duality methods with an automatic choice of parameters Application to shallow water equations in conservative form , 2001 .
[15] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .