Effect of the Brugada syndrome mutation A39V on calmodulin regulation of Cav1.2 channels

[1]  G. Zamponi,et al.  Effect of the Brugada syndrome mutation A39V on calmodulin regulation of Cav1.2 channels , 2014, Molecular Brain.

[2]  G. Zamponi,et al.  Neuronal Voltage-Gated Calcium Channels: Structure, Function, and Dysfunction , 2014, Neuron.

[3]  G. Zamponi,et al.  A novel calmodulin site in the Cav1.2 N-terminus regulates calcium-dependent inactivation , 2014, Pflügers Archiv - European Journal of Physiology.

[4]  G. Zamponi,et al.  A novel calmodulin site in the Cav1.2 N-terminus regulates calcium-dependent inactivation , 2013, Pflügers Archiv - European Journal of Physiology.

[5]  D. T. Yue,et al.  Continuously tunable Ca(2+) regulation of RNA-edited CaV1.3 channels. , 2013, Cell reports.

[6]  N. Dascal,et al.  Regulation of Cardiac L-Type Ca2+ Channel CaV1.2 Via the β-Adrenergic-cAMP-Protein Kinase A Pathway , 2013 .

[7]  J. Hell,et al.  Competition between α-actinin and Ca2+-Calmodulin Controls Surface Retention of the L-type Ca2+ Channel CaV1.2 , 2013, Neuron.

[8]  J. Hell,et al.  CaV1.2 signaling complexes in the heart. , 2013, Journal of molecular and cellular cardiology.

[9]  Henry M Colecraft,et al.  L-type calcium channel targeting and local signalling in cardiac myocytes. , 2013, Cardiovascular research.

[10]  D. T. Yue,et al.  Dynamic switching of calmodulin interactions underlies Ca2+ regulation of CaV1.3 channels , 2013, Nature Communications.

[11]  N. Dascal,et al.  Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. , 2013, Circulation research.

[12]  G. Zamponi,et al.  The Brugada syndrome mutation A39V does not affect surface expression of neuronal rat Cav1.2 channels , 2012, Molecular Brain.

[13]  G. Zamponi,et al.  Trafficking and stability of voltage-gated calcium channels , 2012, Cellular and Molecular Life Sciences.

[14]  Martin Borggrefe,et al.  Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. , 2010, Heart rhythm.

[15]  E. Isacoff,et al.  Multiple C‐terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization , 2010, The EMBO journal.

[16]  F. Hofmann,et al.  Homeostatic Switch in Hebbian Plasticity and Fear Learning after Sustained Loss of Cav1.2 Calcium Channels , 2010, The Journal of Neuroscience.

[17]  H. Ruley,et al.  Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC , 2010, Nature Neuroscience.

[18]  N. Dascal,et al.  Characterization of the calmodulin-binding site in the N terminus of CaV1.2. , 2009, Channels.

[19]  N. Dascal,et al.  Characterization of the calmodulin-binding site in the N terminus of CaV1.2 , 2009 .

[20]  W. Catterall,et al.  Cooperative regulation of Cav1.2 channels by intracellular Mg2+, the proximal C-terminal EF-hand, and the distal C-terminal domain , 2009, The Journal of general physiology.

[21]  W. Catterall,et al.  Cooperative regulation of Ca v 1.2 channels by intracellular Mg 2+ , the proximal C-terminal EF-hand, and the distal C-terminal domain , 2009 .

[22]  D. T. Yue,et al.  A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels , 2008, Nature.

[23]  Michel Haïssaguerre,et al.  Loss-of-Function Mutations in the Cardiac Calcium Channel Underlie a New Clinical Entity Characterized by ST-Segment Elevation, Short QT Intervals, and Sudden Cardiac Death , 2007, Circulation.

[24]  S. H. Young,et al.  Requirement of the TRPC1 Cation Channel in the Generation of Transient Ca2+ Oscillations by the Calcium-sensing Receptor* , 2006, Journal of Biological Chemistry.

[25]  Filip Van Petegem,et al.  Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain–Ca2+/calmodulin complex , 2005, Nature Structural &Molecular Biology.

[26]  W. Catterall,et al.  Modulation of CaV1.2 Channels by Mg2+ Acting at an EF-hand Motif in the COOH-terminal Domain , 2005, The Journal of general physiology.

[27]  D. T. Yue,et al.  G Protein-Gated Inhibitory Module of N-Type (CaV2.2) Ca2+ Channels , 2005, Neuron.

[28]  J. Brugada,et al.  Brugada syndrome: report of the second consensus conference. , 2005, Heart rhythm.

[29]  R. J. Fisher,et al.  Ca2+-Calmodulin-dependent Facilitation and Ca2+ Inactivation of Ca2+ Release-activated Ca2+ Channels* , 2005, Journal of Biological Chemistry.

[30]  James Kim,et al.  Identification of the Components Controlling Inactivation of Voltage-Gated Ca2+ Channels , 2004, Neuron.

[31]  D. T. Yue,et al.  Unified Mechanisms of Ca2+ Regulation across the Ca2+ Channel Family , 2003, Neuron.

[32]  Henry M Colecraft,et al.  Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Yutaka Ueno,et al.  Molecular dynamics simulations revealed Ca2+‐dependent conformational change of Calmodulin , 2002, FEBS letters.

[34]  Ad Bax,et al.  Solution structure of Ca2+–calmodulin reveals flexible hand-like properties of its domains , 2001, Nature Structural Biology.

[35]  D. T. Yue,et al.  Preassociation of Calmodulin with Voltage-Gated Ca2+ Channels Revealed by FRET in Single Living Cells , 2001, Neuron.

[36]  Andy Hudmon,et al.  Molecular Basis of Calmodulin Tethering and Ca2+-dependent Inactivation of L-type Ca2+ Channels* , 2001, The Journal of Biological Chemistry.

[37]  D. T. Yue,et al.  Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels , 2001, Nature.

[38]  G. Zamponi,et al.  Structural determinants of fast inactivation of high voltage-activated Ca2+ channels , 2001, Trends in Neurosciences.

[39]  A. Persechini,et al.  Calmodulin Directly Gates Gap Junction Channels* , 2000, The Journal of Biological Chemistry.

[40]  A. Fox,et al.  The role of dynamic palmitoylation in Ca2+ channel inactivation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. T. Yue,et al.  Critical Determinants of Ca2+-Dependent Inactivation within an EF-Hand Motif of L-Type Ca2+ Channels , 2000 .

[42]  D. T. Yue,et al.  Critical determinants of Ca(2+)-dependent inactivation within an EF-hand motif of L-type Ca(2+) channels. , 2000, Biophysical journal.

[43]  N. Klugbauer,et al.  Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. , 2000, The Journal of biological chemistry.

[44]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[45]  K. Deisseroth,et al.  Calmodulin supports both inactivation and facilitation of L-type calcium channels , 1999, Nature.

[46]  T. Snutch,et al.  Identification of an Integration Center for Cross-talk between Protein Kinase C and G Protein Modulation of N-type Calcium Channels* , 1999, The Journal of Biological Chemistry.

[47]  R. Olcese,et al.  Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. T. Yue,et al.  Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels , 1999, Neuron.

[49]  J. Adelman,et al.  Erratum: Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels (Neuron (March 1999)) , 1999 .

[50]  T. Ishii,et al.  Mechanism of calcium gating in small-conductance calcium-activated potassium channels , 1998, Nature.

[51]  K Schulten,et al.  Structure and dynamics of calmodulin in solution. , 1998, Biophysical journal.

[52]  E. Stefani,et al.  Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+ -binding function of a motif with similarity to Ca2+ -binding domains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. T. Yue,et al.  Essential Ca2+-Binding Motif for Ca2+-Sensitive Inactivation of L-Type Ca2+ Channels , 1995, Science.

[54]  Eva Thulin,et al.  Calcium-induced structural changes and domain autonomy in calmodulin , 1995, Nature Structural Biology.

[55]  Mitsuhiko Ikura,et al.  Calcium-induced conformational transition revealed by the solution structure of apo calmodulin , 1995, Nature Structural Biology.

[56]  D. Clapham,et al.  Calcium signaling , 1995, Cell.

[57]  D. T. Yue,et al.  Essential Ca(2+)-binding motif for Ca(2+)-sensitive inactivation of L-type Ca2+ channels. , 1995, Science.

[58]  S. Vincent,et al.  Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Brugada,et al.  Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. , 1992, Journal of the American College of Cardiology.

[60]  L. Birnbaumer,et al.  Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. , 1992, The Journal of biological chemistry.

[61]  J. Gariépy,et al.  Peptide antisera as sequence-specific probes of protein conformational transitions: calmodulin exhibits calcium-dependent changes in antigenicity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.