Experimental demonstration of a flexible time-domain quantum channel.

We present an experimental realization of a flexible quantum channel where the Hilbert space dimensionality can be controlled electronically. Using electro-optical modulators (EOM) and narrow-band optical filters, quantum information is encoded and decoded in the temporal degrees of freedom of photons from a long-coherence-time single-photon source. Our results demonstrate the feasibility of a generic scheme for encoding and transmitting multidimensional quantum information over the existing fiber-optical telecommunications infrastructure.

[1]  Hong,et al.  Correlated two-photon interference in a dual-beam Michelson interferometer. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[2]  Stefano Pironio,et al.  Closing the detection loophole in Bell experiments using qudits. , 2009, Physical review letters.

[3]  Nicolas Gisin,et al.  Bell-Type Test of Energy-Time Entangled Qutrits , 2004 .

[4]  Erik Woodhead,et al.  Creating and manipulating entangled optical qubits in the frequency domain , 2014, 1403.0805.

[5]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[6]  Aephraim M. Steinberg,et al.  Bright filter-free source of indistinguishable photon pairs. , 2008, Optics express.

[7]  T. Wei,et al.  Beating the channel capacity limit for linear photonic superdense coding , 2008 .

[8]  Ou,et al.  Observation of nonlocal interference in separated photon channels. , 1990, Physical review letters.

[9]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[10]  Erik Woodhead,et al.  Implementing two-photon interference in the frequency domain with electro-optic phase modulators , 2011, 1107.5519.

[11]  Christoph Simon,et al.  Entangling independent photons by time measurement , 2007, 0704.0758.

[12]  J. Capmany,et al.  Conditional Frequency-Domain Beamsplitters Using Phase Modulators , 2011, IEEE Photonics Journal.

[13]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[14]  A. Zeilinger,et al.  Experimental non-classicality of an indivisible quantum system , 2011, Nature.

[15]  Aephraim M. Steinberg,et al.  High-visibility interference in a Bell-inequality experiment for energy and time. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[16]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[17]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[18]  W T Rhodes,et al.  Phase-modulation transmission system for quantum cryptography. , 1999, Optics letters.

[19]  A. Kuhn,et al.  Photonic qubits, qutrits and ququads accurately prepared and delivered on demand , 2012, 1203.5614.

[20]  Xingxing Xing,et al.  Multidimensional quantum information based on single-photon temporal wavepackets. , 2012, Optics express.

[22]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[23]  J. Rarity,et al.  Experimental violation of Bell's inequality based on phase and momentum. , 1990, Physical review letters.

[24]  Jean-Marc Merolla,et al.  Frequency-coded quantum key distribution. , 2007, Optics letters.

[25]  Nicolas Gisin,et al.  Creating high dimensional entanglement using mode-locked lasers , 2002, Quantum Inf. Comput..

[26]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .