Electrical characterization of GaAs/Al0.30Ga0.70 As p+‐n heterojunctions grown by metalorganic vapor phase epitaxy

Electrical transport measurements are very sensitive to the structure of a heterojunction. This sensitivity is used in conjunction with a realistic model for the band diagram to determine the position of the dopant junction relative to the metallurgical junction. This electrical technique involves the determination of an effective barrier height from temperature‐dependent I‐V measurements and comparison with calculated barrier heights. The sensitivity of the electrical characteristics to the device structure can often be greater than that of secondary ion mass spectroscopy or C‐V profiling. GaAs/Al0.30Ga0.70 As p+‐n heterojunctions grown under a variety of conditions are used to demonstrate this technique. Growth conditions which produce abrupt zinc profiles are discussed.

[1]  M. Lundstrom,et al.  Numerical study of emitter-base junction design for AlGaAs/GaAs heterojunction bipolar transistors , 1988 .

[2]  J. Hutchby,et al.  Growth and diffusion of abrupt zinc profiles in gallium arsenide and heterojunction bipolar transistor structures grown by organometallic vapor phase epitaxy , 1988 .

[3]  G. Scilla,et al.  The control and modeling of doping profiles and transients in MOVPE growth , 1988 .

[4]  T. Kuech,et al.  The influence of growth conditions on the electrical properties of GaAs/Al0.30Ga0.70As p+/n heterojunctions , 1988 .

[5]  P. Enquist Secondary ion mass spectroscopy depth profiles of heterojunction bipolar transistor emitter-base heterojunctions grown by low pressure OMVPE , 1988 .

[6]  A. Williams,et al.  MOCVD layer growth of ZnSe using a new zinc source , 1987 .

[7]  L. Chen,et al.  Investigation of zinc incorporation in GaAs epilayers grown by low‐pressure metalorganic chemical‐vapor deposition , 1987 .

[8]  S. Tiwari,et al.  Transport and related properties of (Ga, Al)As/GaAs double heterostructure bipolar junction transistors , 1987, IEEE Transactions on Electron Devices.

[9]  S. Hattangady,et al.  An alternative Mg precursor for p-type doping of OMVPE grown material , 1986 .

[10]  Mark S. Lundstrom,et al.  A Numerical Solution of Poisson's Equation with Application to C-V Analysis of III-V Heterojunction Capacitors , 1985, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  H. Morkoç,et al.  Doping effects and compositional grading in AlxGa1-xAs/GaAs heterojunction bipolar transistors , 1985, IEEE Transactions on Electron Devices.

[12]  M. Missous,et al.  A simple method of modelling the C-tV profiles of high-low junctions and heterojunctions , 1985 .

[13]  Robert Blondeau,et al.  Abrupt OMVPE grown GaAs/GaAlAs heterojunctions , 1984 .

[14]  R. Dupuis,et al.  Growth and characterization of high-quality MOCVD AlGaAs/GaAs single quantum wells , 1984 .

[15]  N. Mason,et al.  Factors influencing doping control and abrupt metallurgical transitions during atmospheric pressure MOVPE growth of AlGaAs and GaAs , 1984 .

[16]  R. Glew Zinc Doping of MOCVD GaAs , 1984 .

[17]  R. Glew,et al.  GaAlAsGaAs p-n-p heterojunction bipolar transistors grown by MOCVD , 1984 .

[18]  J. André Growth of (Al,Ga)As/GaAs heterostructures for HEMT devices , 1984 .

[19]  Y. Su,et al.  Characterization of p-GaAs by low pressure MOCVD using DEZ as dopant , 1984 .

[20]  M. Ludowise,et al.  The growth of Magnesium-doped GaAs by the Om-Vpe process , 1983 .

[21]  S. Hersee,et al.  The variation of the P/N junction position in GaAs/GaAlAs double heterostructures grown by low pressure mo vpe. , 1983 .

[22]  W. C. Johnson,et al.  The influence of debye length on the C-V measurement of doping profiles , 1971 .

[23]  J. Donnelly,et al.  The capacitance of p-n heterojunctions including the effects of interface states , 1967 .