Long-term stability of GaAs/AlAs terahertz quantum-cascade lasers

We have investigated high-performance GaAs/AlAs terahertz (THz) quantum-cascade lasers (QCLs) with respect to the long-term stability of their operating parameters. The output power of lasers that contain an additional, thick AlAs refractive-index contrast layer underneath the cascade structure decreases after three months by about 35%. The deterioration of these lasers is attributed to the oxidation processes in this contrast layer starting from the facets. However, GaAs/AlAs THz QCLs with an Al0.9Ga0.1As refractive-index contrast layer exhibit long-term stability of the operating parameters over many years even when they are exposed to atmospheric conditions. Therefore, these lasers are promising high-power radiation sources in the terahertz spectral region for commercial applications.

[1]  Paul L. J. Helgers,et al.  In-situ control of molecular beam epitaxial growth by spectral reflectivity analysis , 2021 .

[2]  Q. Hu,et al.  High-power portable terahertz laser systems , 2020 .

[3]  B. Williams,et al.  Terahertz quantum-cascade patch-antenna VECSEL with low power dissipation , 2020, Applied Physics Letters.

[4]  M. Hannemann,et al.  High-Performance GaAs/AlAs Terahertz Quantum-Cascade Lasers For Spectroscopic Applications , 2020, IEEE Transactions on Terahertz Science and Technology.

[5]  H. Hübers,et al.  A Compact 4.75-THz Source Based on a Quantum-Cascade Laser With a Back-Facet Mirror , 2019, IEEE Transactions on Terahertz Science and Technology.

[6]  M. Beck,et al.  Thermoelectrically cooled THz quantum cascade laser operating up to 210 K , 2019, Applied Physics Letters.

[7]  H. Grahn,et al.  Determination of the interface parameter in terahertz quantum-cascade laser structures based on transmission electron microscopy , 2018, Applied Physics Letters.

[8]  G. Strasser,et al.  Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation , 2018, ACS photonics.

[9]  B. Williams,et al.  Terahertz quantum cascade VECSEL with watt-level output power , 2018, Applied Physics Letters.

[10]  M. Beck,et al.  A patch-array antenna single-mode low electrical dissipation continuous wave terahertz quantum cascade laser , 2016 .

[11]  H. Grahn,et al.  Terahertz GaAs/AlAs quantum-cascade lasers , 2016 .

[12]  Lutz Schrottke,et al.  4.7-THz Local Oscillator for the GREAT Heterodyne Spectrometer on SOFIA , 2015, IEEE Transactions on Terahertz Science and Technology.

[13]  Andrew D. Burnett,et al.  Terahertz imaging using quantum cascade lasers—a review of systems and applications , 2014 .

[14]  A. Tahraoui,et al.  High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback. , 2014, Optics express.

[15]  Shulong Lu,et al.  Experimental evidence for coherence resonance in a noise-driven GaAs/AlAs superlattice , 2014 .

[16]  H. Richter,et al.  High Resolution Terahertz Spectroscopy with Quantum Cascade Lasers , 2013, Journal of Infrared, Millimeter, and Terahertz Waves.

[17]  H. Hübers,et al.  Quantum-cascade lasers as local oscillators for heterodyne spectrometers in the spectral range around 4.745 THz , 2013 .

[18]  R. Hey,et al.  Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures , 2010 .

[19]  Ivan Favero,et al.  Propagation losses in GaAs/AlOx nonlinear waveguide and their impact on parametric oscillation threshold , 2010, Photonics Europe.

[20]  S. Pavlov,et al.  A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler. , 2010, Optics express.

[21]  J. Reno,et al.  Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation , 2009 .

[22]  R. Hey,et al.  Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions , 2009 .

[23]  Carlo Sirtori,et al.  Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz. , 2006, Optics express.

[24]  David A. Ritchie,et al.  Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. , 2005, Optics express.

[25]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[26]  G. Scalari,et al.  Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction , 2005, CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005..

[27]  David A. Ritchie,et al.  Terahertz quantum-cascade lasers based on an interlaced photon-phonon cascade , 2004 .

[28]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[29]  B. E. Hammons,et al.  Advances in selective wet oxidation of AlGaAs alloys , 1997 .

[30]  L. Coldren,et al.  In situ monitoring and control for MBE growth of optoelectronic devices , 1997 .

[31]  Kent D. Choquette,et al.  Selective oxidation of buried AlGaAs versus AlAs layers , 1996 .

[32]  Martin A. Afromowitz,et al.  Thermal conductivity of Ga1−xAlxAs alloys , 1973 .