Empirical likelihood for semivarying coefficient model with measurement error in the nonparametric part

A semivarying coefficient model with measurement error in the nonparametric part was proposed by Feng and Xue (Ann Inst Stat Math 66:121–140, 2014), but its inferences have not been systematically studied. This paper applies empirical likelihood method to construct confidence regions/intervals for the regression parameter and coefficient function. When some auxiliary information about the parametric part is available, the empirical log-likelihood ratio statistic for the regression parameter is introduced based on the corrected local linear estimator of the coefficient function. Furthermore, corrected empirical log-likelihood ratio statistic for coefficient function is also investigated with the use of auxiliary information. The limiting distributions of the resulting statistics both for the regression parameter and coefficient function are shown to have standard Chi-squared distribution. Simulation experiments and a real data set are presented to evaluate the finite sample performance of our proposed method.

[1]  Yong Zhou,et al.  Corrected local polynomial estimation in varying‐coefficient models with measurement errors , 2006 .

[2]  J. T. Hwang Multiplicative Errors-in-Variables Models with Applications to Recent Data Released by the U.S. Department of Energy , 1986 .

[3]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[4]  Cui Hengjian,et al.  On Parameter Estimation for Semi-linear Errors-in-Variables Models , 1998 .

[5]  W. Härdle,et al.  Estimation in a semiparametric partially linear errors-in-variables model , 1999 .

[6]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[7]  Han-Ying Liang,et al.  Empirical likelihood inference for partially time-varying coefficient errors-in-variables models , 2012 .

[8]  R J Carroll,et al.  Quasilikelihood estimation in measurement error models with correlated replicates. , 1996, Biometrics.

[9]  Li Yan,et al.  Empirical likelihood for partly linear models with errors in all variables , 2014, J. Multivar. Anal..

[10]  Hengjian Cui,et al.  A Semi‐parametric Regression Model with Errors in Variables , 2003 .

[11]  Liugen Xue,et al.  Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition , 2014 .

[12]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[13]  Xin-Yuan Song,et al.  Local Polynomial Fitting in Semivarying Coefficient Model , 2002 .

[14]  Gaorong Li,et al.  Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models , 2011 .

[15]  Yiping Yang,et al.  Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data , 2014, J. Multivar. Anal..

[16]  L A Stefanski,et al.  A Measurement Error Model for Binary and Ordinal Regression Title: a Measurement Error Model for Binary and Ordinal Regression , 2022 .

[17]  Jiahua Chen,et al.  Empirical likelihood estimation for ?nite populations and the e?ective usage of auxiliary informatio , 1993 .

[18]  Byeong U. Park,et al.  Efficient estimation for partially linear varying coefficient models when coefficient functions have different smoothing variables , 2014, J. Multivar. Anal..

[19]  A. A. Weiss,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[20]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[21]  R. Koenker Quantile Regression: Name Index , 2005 .

[22]  Lixing Zhu,et al.  Empirical likelihood inference in linear regression with nonignorable missing response , 2014, Comput. Stat. Data Anal..

[23]  Yong Zhou,et al.  Empirical likelihood for semiparametric varying-coefficient partially linear regression models , 2006 .

[24]  A. Satorra,et al.  Measurement Error Models , 1988 .

[25]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[26]  Biao Zhang,et al.  Confidence intervals for a distribution function in the presence of auxiliary information , 1996 .

[27]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[28]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[29]  Chuanhua Wei,et al.  Statistical inference for restricted partially linear varying coefficient errors-in-variables models , 2012 .

[30]  Riquan Zhang,et al.  Profile empirical-likelihood inferences for the single-index-coefficient regression model , 2013, Stat. Comput..

[31]  Jianqing Fan,et al.  Profile likelihood inferences on semiparametric varying-coefficient partially linear models , 2005 .

[32]  Hua Liang,et al.  Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates , 2009, 0903.0499.

[33]  A. Banerjee,et al.  Functional cointegration: definition and nonparametric estimation , 2014 .