Low-frequency terrestrial gravitational-wave detectors

Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-hertz radiation from massive astrophysical sources. Here we examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the 0.1--10 Hz band. We describe the plethora of potential astrophysical sources in this band and make estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be extremely challenging to overcome.

[1]  Steven Chu,et al.  High-brightness atom source for atomic fountains , 2001 .

[2]  Naoki Seto,et al.  DECIGO and DECIGO pathfinder , 2010 .

[3]  D. Maoz,et al.  THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK , 2012, 1202.5472.

[4]  A. Buonanno TASI lectures on gravitational waves from the early universe , 2003, gr-qc/0303085.

[5]  Keisuke Goda,et al.  Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers , 2005, gr-qc/0508102.

[6]  Duncan A. Brown,et al.  Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO , 2007, 0705.0285.

[7]  T. Regimbau The astrophysical gravitational wave stochastic background , 2011, 1101.2762.

[8]  J. Gair,et al.  Exploring intermediate and massive black-hole binaries with the Einstein Telescope , 2009, 0907.5450.

[9]  C. Groot‐Hedlin,et al.  Infrasound: Connecting the Solid Earth, Oceans, and Atmosphere , 2012 .

[10]  Thomas K. Flesch,et al.  Wind and remnant tree sway in forest cutblocks. I. Measured winds in experimental cutblocks , 1999 .

[11]  Jeremy Faludi,et al.  Seismic isolation enhancements for initial and advanced LIGO , 2004 .

[12]  C. Ott Probing the core-collapse supernova mechanism with gravitational waves , 2009, 0905.2797.

[13]  Peter Bormann,et al.  New Manual of Seismological Observatory Practice , 2002 .

[14]  J. Bohnet,et al.  A steady-state superradiant laser with less than one intracavity photon , 2012, Nature.

[15]  Vincent Loriette,et al.  Status of the Virgo project , 2011 .

[16]  D. Banka,et al.  Noise levels of superconducting gravimeters at seismic frequencies , 1999 .

[17]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[18]  Leopoldo Milano,et al.  Feasibility of a magnetic suspension for second generation gravitational wave interferometers , 2004 .

[19]  David Blair,et al.  Passive vibration isolation using a Roberts linkage , 2003 .

[20]  Charles R. Hutt,et al.  Self-Noise Models of Seismic Instruments , 2009 .

[21]  Benno Willke,et al.  The upgrade of GEO 600 , 2010, 1004.0339.

[22]  C Bogan,et al.  Stabilized high-power laser system for the gravitational wave detector advanced LIGO. , 2012, Optics express.

[23]  Barbara Scherllin-Pirscher,et al.  A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .

[24]  F. Vetrano,et al.  Newtonian noise limit in atom interferometers for gravitational wave detection , 2013, 1304.1702.

[25]  Peter R. Saulson,et al.  Terrestrial gravitational noise on a gravitational wave antenna , 1984 .

[26]  Peter Fritschel,et al.  DC readout experiment in Enhanced LIGO , 2011, 1110.2815.

[27]  A. Masiello,et al.  Recent Developments in General Relativity , 2000 .

[28]  J. Harms,et al.  Subtraction-noise projection in gravitational-wave detector networks , 2008, 0803.0226.

[29]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[30]  W. Prothero,et al.  The superconducting gravimeter , 1968 .

[31]  Louis J. Lanzerotti,et al.  Solar Modal Structure of the Engineering Environment , 2007, Proceedings of the IEEE.

[32]  J. Harms,et al.  Big Bang Observer and the neutron-star-binary subtraction problem , 2005, gr-qc/0511092.

[33]  S. Chiow,et al.  102ℏk large area atom interferometers. , 2011, Physical review letters.

[34]  Chris L. Fryer,et al.  THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.

[35]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[36]  L. Milano,et al.  The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer , 2011 .

[37]  Nelson Christensen,et al.  Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications , 2013, 1303.2613.

[38]  Jaret Heise,et al.  Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota , 2010, 1006.0678.

[39]  Savas Dimopoulos,et al.  General Relativistic Effects in Atom Interferometry , 2008, 0802.4098.

[40]  R. Adhikari,et al.  Subtraction of Newtonian noise using optimized sensor arrays , 2012, 1207.0275.

[41]  D. Blair,et al.  High performance vibration isolation using springs in Euler column buckling mode , 2002 .

[42]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[43]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[44]  K. Kawabe,et al.  Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer , 2004 .

[45]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[46]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[47]  F. Cotton,et al.  The nature of noise wavefield and its applications for site effects studies A literature review , 2006 .

[48]  Shuhei Okubo,et al.  Reciprocity theorem to compute the static deformation due to a point dislocation buried in a spherically symmetric earth , 1993 .

[49]  Seismic gravity-gradient noise in interferometric gravitational-wave detectors , 1998, gr-qc/9806018.

[50]  Nan Yu,et al.  Gravitational wave detection with single-laser atom interferometers , 2010, 1003.4218.

[51]  J. Thorpe,et al.  Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors. , 2012, Physical review letters.

[52]  Interferometric testbed for nanometer level stabilization of environmental motion over long time scales. , 2008, Applied optics.

[53]  N. Mavalvala,et al.  Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors , 2011 .

[54]  V. Sannibale,et al.  Monolithic geometric anti-spring blades , 2005 .

[55]  Observing IMBH-IMBH Binary Coalescences via Gravitational Radiation , 2006, astro-ph/0605732.

[56]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[57]  Peter Bormann,et al.  The New IASPEI Manual of Seismological Observatory Practice , 2000 .

[58]  A. Giazotto Mirror electrostatic suspension for interferometric detectors of gravitational waves , 1998 .

[59]  Alison J. Farmer,et al.  The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.

[60]  M. Ando,et al.  Torsion-bar antenna for low-frequency gravitational-wave observations. , 2010, Physical review letters.

[61]  Benjamin Edwards,et al.  Development of a Response Spectral Ground‐Motion Prediction Equation (GMPE) for Seismic‐Hazard Analysis from Empirical Fourier Spectral and Duration Models , 2015 .

[62]  A. Errico,et al.  Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity , 1998 .

[63]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[64]  A. Marturano,et al.  OPEN FILE REPORT , 1999 .

[65]  Shuhei Okubo,et al.  Gravity and potential changes due to shear and tensile faults in a half-space , 1992 .

[66]  M. Kasevich,et al.  New method for gravitational wave detection with atomic sensors. , 2012, Physical review letters.

[67]  Ritva Keski-Kuha,et al.  An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO) , 2010, 1009.2702.

[68]  Dark matter in cosmology quantum measurements experimental gravitation : proceedings of the XXXIst Rencontres de Moriond, Series: Moriond Workshops, Les Arcs, Savoie, France, January 20-27, 1996 , 1996 .

[69]  Cutler,et al.  Gravitational helioseismology? , 1996, Physical review. D, Particles and fields.

[70]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[71]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[72]  Jonathan R. Gair,et al.  Possible LISA follow-on mission scientific objectives , 2013 .

[73]  G. Nelemans,et al.  SPECTROSCOPIC EVIDENCE FOR A 5.4 MINUTE ORBITAL PERIOD IN HM CANCRI , 2010, 1003.0658.

[74]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[75]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[76]  Caltech,et al.  GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE , 2012, 1210.6674.

[77]  Mattias Johnsson,et al.  80hk momentum separation with Bloch oscillations in an optically guided atom interferometer , 2013, 1307.0268.

[78]  Savas Dimopoulos,et al.  Atomic gravitational wave interferometric sensor , 2008, 0806.2125.

[79]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[80]  Michael Hohensee,et al.  Sources and technology for an atomic gravitational wave interferometric sensor , 2010, 1001.4821.

[81]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[82]  F. Baudin,et al.  The quest for the solar g modes , 2009, 0910.0848.

[83]  Manochehr Bahavar,et al.  Ambient infrasound noise , 2005 .

[84]  Pau Amaro-Seoane,et al.  Intermediate-mass black holes in colliding clusters: Implications for lower-frequency gravitational-wave astronomy , 2006 .

[85]  Wenke Sun,et al.  A Network of Superconducting Gravimeters Detects Submicrogal Coseismic Gravity Changes , 2004, Science.

[86]  L. Piersanti,et al.  Pre-explosive observational properties of Type Ia supernovae , 2013, 1304.7610.

[87]  M. G. Beker,et al.  Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise , 2011 .

[88]  Robert K. Cessaro,et al.  Sources of primary and secondary microseisms , 1994, Bulletin of the Seismological Society of America.

[89]  T. Flesch,et al.  Wind and remnant tree sway in forest cutblocks. III. a windflow model to diagnose spatial variation , 1999 .

[90]  Jeannot Trampert,et al.  Comparative study of superconducting gravimeters and broadband seismometers STS-1/Z in seismic and subseismic frequency bands. , 1997 .

[91]  G. Mueller Beam jitter coupling in advanced LIGO. , 2005, Optics express.

[92]  Andrew G. Glen,et al.  APPL , 2001 .

[93]  M. Ando,et al.  Upper limit on gravitational wave backgrounds at 0.2 Hz with a torsion-bar antenna. , 2011, Physical review letters.

[94]  Thomas K. Flesch,et al.  Wind and remnant tree sway in forest cutblocks. II. Relating measured tree sway to wind statistics , 1999 .

[95]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[96]  G. Prodi,et al.  Results of the IGEC-2 search for gravitational wave bursts during 2005 , 2007, 0705.0688.

[97]  T. Creighton Tumbleweeds and airborne gravitational noise sources for LIGO , 2000, gr-qc/0007050.

[98]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[99]  F. Rasio,et al.  Massive Black Hole Binaries from Collisional Runaways , 2005, astro-ph/0512642.

[100]  E. R. Lemon,et al.  Spectra of air pressure fluctuations at the soil surface , 1970 .

[101]  T. Regimbau,et al.  Astrophysical sources of a stochastic gravitational-wave background , 2008, 0806.2794.