Low-frequency terrestrial gravitational-wave detectors
暂无分享,去创建一个
Holger Muller | Masaki Ando | Yanbei Chen | Rana X. Adhikari | Jan Harms | R. Adhikari | M. Evans | J. Harms | B. Slagmolen | M. Ando | Yanbei Chen | M. Miller | M. Coleman Miller | Matthew Evans | Bram J. J. Slagmolen | H. Mȕller
[1] Steven Chu,et al. High-brightness atom source for atomic fountains , 2001 .
[2] Naoki Seto,et al. DECIGO and DECIGO pathfinder , 2010 .
[3] D. Maoz,et al. THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK , 2012, 1202.5472.
[4] A. Buonanno. TASI lectures on gravitational waves from the early universe , 2003, gr-qc/0303085.
[5] Keisuke Goda,et al. Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers , 2005, gr-qc/0508102.
[6] Duncan A. Brown,et al. Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO , 2007, 0705.0285.
[7] T. Regimbau. The astrophysical gravitational wave stochastic background , 2011, 1101.2762.
[8] J. Gair,et al. Exploring intermediate and massive black-hole binaries with the Einstein Telescope , 2009, 0907.5450.
[9] C. Groot‐Hedlin,et al. Infrasound: Connecting the Solid Earth, Oceans, and Atmosphere , 2012 .
[10] Thomas K. Flesch,et al. Wind and remnant tree sway in forest cutblocks. I. Measured winds in experimental cutblocks , 1999 .
[11] Jeremy Faludi,et al. Seismic isolation enhancements for initial and advanced LIGO , 2004 .
[12] C. Ott. Probing the core-collapse supernova mechanism with gravitational waves , 2009, 0905.2797.
[13] Peter Bormann,et al. New Manual of Seismological Observatory Practice , 2002 .
[14] J. Bohnet,et al. A steady-state superradiant laser with less than one intracavity photon , 2012, Nature.
[15] Vincent Loriette,et al. Status of the Virgo project , 2011 .
[16] D. Banka,et al. Noise levels of superconducting gravimeters at seismic frequencies , 1999 .
[17] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[18] Leopoldo Milano,et al. Feasibility of a magnetic suspension for second generation gravitational wave interferometers , 2004 .
[19] David Blair,et al. Passive vibration isolation using a Roberts linkage , 2003 .
[20] Charles R. Hutt,et al. Self-Noise Models of Seismic Instruments , 2009 .
[21] Benno Willke,et al. The upgrade of GEO 600 , 2010, 1004.0339.
[22] C Bogan,et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO. , 2012, Optics express.
[23] Barbara Scherllin-Pirscher,et al. A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .
[24] F. Vetrano,et al. Newtonian noise limit in atom interferometers for gravitational wave detection , 2013, 1304.1702.
[25] Peter R. Saulson,et al. Terrestrial gravitational noise on a gravitational wave antenna , 1984 .
[26] Peter Fritschel,et al. DC readout experiment in Enhanced LIGO , 2011, 1110.2815.
[27] A. Masiello,et al. Recent Developments in General Relativity , 2000 .
[28] J. Harms,et al. Subtraction-noise projection in gravitational-wave detector networks , 2008, 0803.0226.
[29] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses , 1964 .
[30] W. Prothero,et al. The superconducting gravimeter , 1968 .
[31] Louis J. Lanzerotti,et al. Solar Modal Structure of the Engineering Environment , 2007, Proceedings of the IEEE.
[32] J. Harms,et al. Big Bang Observer and the neutron-star-binary subtraction problem , 2005, gr-qc/0511092.
[33] S. Chiow,et al. 102ℏk large area atom interferometers. , 2011, Physical review letters.
[34] Chris L. Fryer,et al. THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.
[35] Joshua R. Smith,et al. LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.
[36] L. Milano,et al. The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer , 2011 .
[37] Nelson Christensen,et al. Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications , 2013, 1303.2613.
[38] Jaret Heise,et al. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota , 2010, 1006.0678.
[39] Savas Dimopoulos,et al. General Relativistic Effects in Atom Interferometry , 2008, 0802.4098.
[40] R. Adhikari,et al. Subtraction of Newtonian noise using optimized sensor arrays , 2012, 1207.0275.
[41] D. Blair,et al. High performance vibration isolation using springs in Euler column buckling mode , 2002 .
[42] K. S. Thorne,et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.
[43] Lei Chen,et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.
[44] K. Kawabe,et al. Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer , 2004 .
[45] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[46] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[47] F. Cotton,et al. The nature of noise wavefield and its applications for site effects studies A literature review , 2006 .
[48] Shuhei Okubo,et al. Reciprocity theorem to compute the static deformation due to a point dislocation buried in a spherically symmetric earth , 1993 .
[49] Seismic gravity-gradient noise in interferometric gravitational-wave detectors , 1998, gr-qc/9806018.
[50] Nan Yu,et al. Gravitational wave detection with single-laser atom interferometers , 2010, 1003.4218.
[51] J. Thorpe,et al. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors. , 2012, Physical review letters.
[52] Interferometric testbed for nanometer level stabilization of environmental motion over long time scales. , 2008, Applied optics.
[53] N. Mavalvala,et al. Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors , 2011 .
[54] V. Sannibale,et al. Monolithic geometric anti-spring blades , 2005 .
[55] Observing IMBH-IMBH Binary Coalescences via Gravitational Radiation , 2006, astro-ph/0605732.
[56] K. Perez. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .
[57] Peter Bormann,et al. The New IASPEI Manual of Seismological Observatory Practice , 2000 .
[58] A. Giazotto. Mirror electrostatic suspension for interferometric detectors of gravitational waves , 1998 .
[59] Alison J. Farmer,et al. The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.
[60] M. Ando,et al. Torsion-bar antenna for low-frequency gravitational-wave observations. , 2010, Physical review letters.
[61] Benjamin Edwards,et al. Development of a Response Spectral Ground‐Motion Prediction Equation (GMPE) for Seismic‐Hazard Analysis from Empirical Fourier Spectral and Duration Models , 2015 .
[62] A. Errico,et al. Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity , 1998 .
[63] J. Armstrong,et al. Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .
[64] A. Marturano,et al. OPEN FILE REPORT , 1999 .
[65] Shuhei Okubo,et al. Gravity and potential changes due to shear and tensile faults in a half-space , 1992 .
[66] M. Kasevich,et al. New method for gravitational wave detection with atomic sensors. , 2012, Physical review letters.
[67] Ritva Keski-Kuha,et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO) , 2010, 1009.2702.
[69] Cutler,et al. Gravitational helioseismology? , 1996, Physical review. D, Particles and fields.
[70] Kentaro Somiya,et al. Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.
[71] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[72] Jonathan R. Gair,et al. Possible LISA follow-on mission scientific objectives , 2013 .
[73] G. Nelemans,et al. SPECTROSCOPIC EVIDENCE FOR A 5.4 MINUTE ORBITAL PERIOD IN HM CANCRI , 2010, 1003.0658.
[74] Bernard F. Schutz,et al. Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.
[75] J. Marangos,et al. Electromagnetically induced transparency : Optics in coherent media , 2005 .
[76] Caltech,et al. GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE , 2012, 1210.6674.
[77] Mattias Johnsson,et al. 80hk momentum separation with Bloch oscillations in an optically guided atom interferometer , 2013, 1307.0268.
[78] Savas Dimopoulos,et al. Atomic gravitational wave interferometric sensor , 2008, 0806.2125.
[79] Remo Guidieri. Res , 1995, RES: Anthropology and Aesthetics.
[80] Michael Hohensee,et al. Sources and technology for an atomic gravitational wave interferometric sensor , 2010, 1001.4821.
[81] V. Altuzar,et al. Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .
[82] F. Baudin,et al. The quest for the solar g modes , 2009, 0910.0848.
[83] Manochehr Bahavar,et al. Ambient infrasound noise , 2005 .
[84] Pau Amaro-Seoane,et al. Intermediate-mass black holes in colliding clusters: Implications for lower-frequency gravitational-wave astronomy , 2006 .
[85] Wenke Sun,et al. A Network of Superconducting Gravimeters Detects Submicrogal Coseismic Gravity Changes , 2004, Science.
[86] L. Piersanti,et al. Pre-explosive observational properties of Type Ia supernovae , 2013, 1304.7610.
[87] M. G. Beker,et al. Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise , 2011 .
[88] Robert K. Cessaro,et al. Sources of primary and secondary microseisms , 1994, Bulletin of the Seismological Society of America.
[89] T. Flesch,et al. Wind and remnant tree sway in forest cutblocks. III. a windflow model to diagnose spatial variation , 1999 .
[90] Jeannot Trampert,et al. Comparative study of superconducting gravimeters and broadband seismometers STS-1/Z in seismic and subseismic frequency bands. , 1997 .
[91] G. Mueller. Beam jitter coupling in advanced LIGO. , 2005, Optics express.
[92] Andrew G. Glen,et al. APPL , 2001 .
[93] M. Ando,et al. Upper limit on gravitational wave backgrounds at 0.2 Hz with a torsion-bar antenna. , 2011, Physical review letters.
[94] Thomas K. Flesch,et al. Wind and remnant tree sway in forest cutblocks. II. Relating measured tree sway to wind statistics , 1999 .
[95] P. Murdin. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .
[96] G. Prodi,et al. Results of the IGEC-2 search for gravitational wave bursts during 2005 , 2007, 0705.0688.
[97] T. Creighton. Tumbleweeds and airborne gravitational noise sources for LIGO , 2000, gr-qc/0007050.
[98] B Johnson,et al. An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.
[99] F. Rasio,et al. Massive Black Hole Binaries from Collisional Runaways , 2005, astro-ph/0512642.
[100] E. R. Lemon,et al. Spectra of air pressure fluctuations at the soil surface , 1970 .
[101] T. Regimbau,et al. Astrophysical sources of a stochastic gravitational-wave background , 2008, 0806.2794.