Local setting of spin textures in a granular antiferromagnet

Controlling the magnetic order of antiferromagnets is challenging due to their vanishing net magnetization. For this reason, the study of local spin textures in antiferromagnets is restricted by the difficulty in nucleating such states. Here, using atomistic simulations we demonstrate a method for nucleating localized spin textures in the grains of thin film antiferromagnet, $\gamma$-IrMn$_3$. Utilising the exchange bias coupling between a ferromagnet and an antiferromagnet, we set the spin texture in the latter from a predefined spin texture in the former by means of a thermal cycling procedure. The local textures set in the antiferromagnetic grains are shown to be stable against field perturbations. We also discuss how various material parameters affect the efficiency of the setting and the characteristics of these set textures. The setting of antiferromagnetic spin textures provides a potential route to antiferromagnetic spintronic devices with non-collinear spin states such as skyrmions, bubbles and domain walls.

[1]  Hongxin Yang,et al.  Layer-dependent Dzyaloshinskii–Moriya interaction and field-free topological magnetism in two-dimensional Janus MnSTe , 2023, 2D Materials.

[2]  D. Ghader,et al.  Designing Layered 2D Skyrmion Lattices in Moiré Magnetic Heterostructures , 2023, Advanced Materials Interfaces.

[3]  D. Muller,et al.  Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide , 2021, Nature Electronics.

[4]  R. Chantrell,et al.  Atomistic simulations of the magnetic properties of IrxMn1−x alloys , 2021 .

[5]  R. Chantrell,et al.  Exchange bias in multigranular noncollinear IrMn3/CoFe thin films , 2021 .

[6]  R. Chantrell,et al.  Atomistic origin of exchange anisotropy in noncollinear γ−IrMn3 –CoFe bilayers , 2020 .

[7]  S. Auffret,et al.  Imprint from ferromagnetic skyrmions in an antiferromagnet via exchange bias , 2020, Applied Physics Letters.

[8]  J. Sinova,et al.  An anomalous Hall effect in altermagnetic ruthenium dioxide , 2020, Nature Electronics.

[9]  J. Sinova,et al.  Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism. , 2020, Physical review letters.

[10]  R. Chantrell,et al.  Magnetic anisotropy of the noncollinear antiferromagnet IrMn3 , 2019 .

[11]  J. D. Alzate-Cardona,et al.  Optimal phase space sampling for Monte Carlo simulations of Heisenberg spin systems , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  R. Evans,et al.  Enhanced finite size and interface mixing effects in iridium manganese ultra thin films , 2018, Journal of Applied Physics.

[13]  J. Henk,et al.  The family of topological Hall effects for electrons in skyrmion crystals , 2018, The European Physical Journal B.

[14]  Mannan Ali,et al.  Magnetic domain texture and the Dzyaloshinskii-Moriya interaction in Pt/Co/IrMn and Pt/Co/FeMn thin films with perpendicular exchange bias , 2018, Physical Review B.

[15]  J. Sinova Topological Antiferromagnetic Spintronics , 2018 .

[16]  A. Brataas,et al.  Antiferromagnetic spin textures and dynamics , 2018 .

[17]  Binghai Yan,et al.  Topological antiferromagnetic spintronics , 2018 .

[18]  H. Yuan,et al.  A theory on skyrmion size , 2018, 2018 IEEE International Magnetic Conference (INTERMAG).

[19]  A. Manchon,et al.  Theory of the Topological Spin Hall Effect in Antiferromagnetic Skyrmions: Impact on Current-Induced Motion. , 2017, Physical review letters.

[20]  Alexander Mook,et al.  Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect , 2017, 1707.05267.

[21]  J. Sinova,et al.  B–T phase diagram of Pd/Fe/Ir(111) computed with parallel tempering Monte Carlo , 2017, New Journal of Physics.

[22]  Kang L. Wang,et al.  Dzyaloshinskii-Moriya Interaction across an Antiferromagnet-Ferromagnet Interface. , 2017, Physical review letters.

[23]  C. Felser,et al.  Spin-Polarized Current in Noncollinear Antiferromagnets. , 2017, Physical review letters.

[24]  J. Hayakawa,et al.  Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks , 2016, 1608.00252.

[25]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[26]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[27]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[28]  J. Barker,et al.  Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. , 2015, Physical review letters.

[29]  Yan Zhou,et al.  Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.

[30]  A. Fert,et al.  Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. , 2015, Physical review letters.

[31]  M. O. A. Ellis,et al.  Atomistic spin model simulations of magnetic nanomaterials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Q. Niu,et al.  Anomalous Hall effect arising from noncollinear antiferromagnetism. , 2013, Physical review letters.

[33]  V. Baltz Thermally driven asymmetric responses of grains versus spin-glass related distributions of blocking temperature in exchange biased Co/IrMn bilayers , 2013 .

[34]  J. Bokor,et al.  Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs , 2011 .

[35]  M. Pakala,et al.  Measurement of the antiferromagnet activity in exchange bias systems , 2010 .

[36]  K. O’Grady,et al.  A new paradigm for exchange bias in polycrystalline thin films , 2010 .

[37]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[38]  B. Diény,et al.  Direct evidence of imprinted vortex states in the antiferromagnet of exchange biased microdisks , 2009 .

[39]  U. Nowak,et al.  Giant magnetic anisotropy of the bulk antiferromagnets IrMn and IrMn 3 from first principles , 2008, 0808.3900.

[40]  K. O’Grady,et al.  Control of the setting process in CoFe/IrMn exchange bias systems , 2008 .

[41]  A. Sakuma,et al.  First-principles study of the magnetic structures of ordered and disordered Mn-Ir alloys , 2003 .

[42]  F. Lázaro,et al.  Langevin-dynamics study of the dynamical properties of small magnetic particles , 1998 .

[43]  B. Berg,et al.  Definition and statistical distributions of a topological number in the lattice O(3) σ-model , 1981 .