Complementarity of Renewable Energy-Based Hybrid Systems

....................................................................................................................................................... iii Summary ...................................................................................................................................................... iv Acknowledgments ...................................................................................................................................... xiv Acronyms and Abbreviations ..................................................................................................................... xv

[1]  Anna H. Schleifer,et al.  Hybrid renewable energy systems: the value of storage as a function of PV-wind variability , 2023, Frontiers in Energy Research.

[2]  Nicholas W. Grue,et al.  Temporal Complementarity and Value of Wind-Pv Hybrid Systems Across the United States , 2022, SSRN Electronic Journal.

[3]  V. Gevorgian,et al.  Enhancing Local Grid Resilience with Small Hydropower Hybrids: Proving the concept through demonstration, simulation, and analysis with Idaho Falls Power , 2022 .

[4]  D. Hurlbut,et al.  Interregional Renewable Energy Zones in National Transmission Analysis , 2022 .

[5]  Jonathan L. Ho,et al.  Examining Supply-Side Options to Achieve 100% Clean Electricity by 2035 , 2022 .

[6]  Caitlyn E. Clark,et al.  Wind and Solar Hybrid Power Plants for Energy Resilience , 2022 .

[7]  P. Denholm,et al.  Hybrid Resources: Challenges, Implications, Opportunities, and Innovation , 2021, IEEE Power and Energy Magazine.

[8]  Fausto A. Canales,et al.  Global atlas of solar and wind resources temporal complementarity , 2021, Energy Conversion and Management.

[9]  M. Sekkeli,et al.  Determining optimal spatial and temporal complementarity between wind and hydropower , 2021 .

[10]  Vahan Gevorgian,et al.  The challenges of achieving a 100% renewable electricity system in the United States , 2021, Joule.

[11]  W. Poganietz,et al.  Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America , 2021 .

[12]  K. Eurek,et al.  A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies , 2021 .

[13]  Takvor H. Soukissian,et al.  Exploiting offshore wind and solar resources in the Mediterranean using ERA5 reanalysis data , 2021, 2104.00571.

[14]  Dharik S. Mallapragada,et al.  Long-run system value of battery energy storage in future grids with increasing wind and solar generation , 2020 .

[15]  Jinhuan Yang,et al.  Solar Photovoltaic Generation , 2020 .

[16]  Gustavo de Novaes Pires Leite,et al.  A review on the complementarity between grid-connected solar and wind power systems , 2020 .

[17]  Shuang Han,et al.  Reviews on characteristic of renewables: Evaluating the variability and complementarity , 2020 .

[18]  Martin Fleischmann,et al.  momepy: Urban Morphology Measuring Toolkit , 2019, J. Open Source Softw..

[19]  Travis M. Williams,et al.  The Renewable Energy Potential (reV) Model: A Geospatial Platform for Technical Potential and Supply Curve Modeling , 2019 .

[20]  Gareth Harrison,et al.  Wind-solar complementarity and effective use of distribution network capacity , 2019, Applied Energy.

[21]  Jinfu Liu,et al.  Spatial and temporal assessments of complementarity for renewable energy resources in China , 2019, Energy.

[22]  Fausto A. Canales,et al.  Assessing temporal complementarity between three variable energy sources through correlation and compromise programming , 2019, Energy.

[23]  Fausto A. Canales,et al.  A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions , 2019, 1904.01667.

[24]  He Li,et al.  Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization , 2019, Applied Energy.

[25]  Yongqian Liu,et al.  Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio , 2019, Applied Energy.

[26]  Damien Ernst,et al.  Critical Time Windows for Renewable Resource Complementarity Assessment , 2018, Energy.

[27]  D. Cohan,et al.  Assessing solar and wind complementarity in Texas , 2018, Renewables: Wind, Water, and Solar.

[28]  S. Liersch,et al.  A new approach for assessing synergies of solar and wind power: implications for West Africa , 2018, Environmental Research Letters.

[29]  Alexandre Beluco,et al.  Complementarity Roses Evaluating Spatial Complementarity in Time between Energy Resources , 2018, Energies.

[30]  L. xilinx Wang,et al.  Complementary operational research for a hydro-wind-solar hybrid power system on the upper Jinsha River , 2018, Journal of Renewable and Sustainable Energy.

[31]  J. Logan,et al.  Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States , 2018 .

[32]  Nate Blair,et al.  System Advisor Model (SAM) General Description (Version 2017.9.5) , 2018 .

[33]  Matthew R. Shaner,et al.  Geophysical constraints on the reliability of solar and wind power in the United States , 2018 .

[34]  N. Rahim,et al.  Solar photovoltaic generation forecasting methods: A review , 2018 .

[35]  Alexandre Szklo,et al.  Contribution of Variable Renewable Energy to Increase Energy Security in Latin America , 2017 .

[36]  M. Borga,et al.  Space-time variability of climate variables and intermittent renewable electricity production – A review , 2017 .

[37]  Elizando M. Borba,et al.  An Index Assessing the Energetic Complementarity in Time between More than Two Energy Resources , 2017 .

[38]  Gussan Maaz Mufti,et al.  Wind-hybrid Power Generation Systems Using Renewable Energy Sources- A Review , 2017, International Journal of Renewable Energy Research.

[39]  Robert A. Taylor,et al.  Assessment of solar and wind resource synergy in Australia , 2017 .

[40]  Joao P. S. Catalao,et al.  An overview of Demand Response: Key-elements and international experience , 2017 .

[41]  Galen Maclaurin,et al.  The National Solar Radiation Data Base (NSRDB) , 2017, Renewable and Sustainable Energy Reviews.

[42]  Thomas Huld,et al.  Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective , 2017 .

[43]  Jon Olauson,et al.  Correlation between wind power generation in the European countries , 2016 .

[44]  Audun Botterud,et al.  The value of energy storage in decarbonizing the electricity sector , 2016 .

[45]  Jianzhou Wang,et al.  Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models , 2016 .

[46]  B. Hodge,et al.  The value of day-ahead solar power forecasting improvement , 2016 .

[47]  Aaron D. Smith,et al.  Wind Plant Preconstruction Energy Estimates. Current Practice and Opportunities , 2016 .

[48]  Thomas Huld,et al.  A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems , 2016 .

[49]  Jay Apt,et al.  Geographic smoothing of solar PV: results from Gujarat , 2015 .

[50]  Bri-Mathias Hodge,et al.  The Wind Integration National Dataset (WIND) Toolkit , 2015 .

[51]  Peter Lund,et al.  Review of energy system flexibility measures to enable high levels of variable renewable electricity , 2015 .

[52]  M. Borga,et al.  Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy , 2015 .

[53]  Boualem Hadjerioua,et al.  An Assessment of Energy Potential at Non-Powered Dams in the United States , 2012 .

[54]  Vasilis Fthenakis,et al.  The optimum mix of electricity from wind- and solar-sources in conventional power systems: Evaluating the case for New York State , 2011 .

[55]  R. Ramakumar,et al.  Modeling and Assessment of Wind and Insolation Resources with a Focus on Their Complementary Nature: A Case Study of Oklahoma , 2011 .

[56]  Mark Z. Jacobson,et al.  Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials , 2011 .

[57]  Joakim Widen,et al.  Correlations Between Large-Scale Solar and Wind Power in a Future Scenario for Sweden , 2011, IEEE Transactions on Sustainable Energy.

[58]  Abraham Ellis,et al.  Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System , 2009 .

[59]  A. Krenzinger,et al.  A dimensionless index evaluating the time complementarity between solar and hydraulic energies , 2008 .

[60]  D. Kammen,et al.  Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria , 2014 .

[61]  Ian H. Rowlands,et al.  Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada , 2011 .

[62]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[63]  R. H. Shaw,et al.  Complimentary nature of wind and solar energy at a continental mid‐latitude station , 1979 .