Preconditioned Krylov solvers for BEA
暂无分享,去创建一个
[1] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[2] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[3] K. A. Gallivan,et al. Parallel Algorithms for Dense Linear Algebra Computations , 1990, SIAM Rev..
[5] J. Ortega. Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.
[6] Klaus-Jürgen Bathe,et al. Studies of finite element proceduresan evaluation of preconditioned iterative solvers , 1989 .
[7] Thomas C. Oppe,et al. An introduction to the NSPCG software package , 1989 .
[8] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[9] J. H. Kane,et al. Iterative solution techniques in boundary element analysis , 1991 .
[10] J. H. Kane,et al. Symmetric Galerkin boundary formulations employing curved elements , 1993 .
[11] Michel O. Deville,et al. Fourier Analysis of Finite Element Preconditioned Collocation Schemes , 1992, SIAM J. Sci. Comput..
[12] Vijay Sonnad,et al. A comparison of direct and preconditioned iterative techniques for sparse, unsymmetric systems of linear equations , 1989 .
[13] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[14] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[15] Z. Zlatev,et al. SOLVING LARGE AND SPARSE LINEAR LEAST-SQUARES PROBLEMS BY CONJUGATE GRADIENT ALGORITHMS , 1988 .
[16] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[17] Yi Yan,et al. Sparse Preconditioned Iterative Methods for Dense Linear Systems , 1994, SIAM J. Sci. Comput..