Projective Dynamics: Fusing Constraint Projections for Fast Simulation

We present a new method for implicit time integration of physical systems. Our approach builds a bridge between nodal Finite Element methods and Position Based Dynamics, leading to a simple, efficient, robust, yet accurate solver that supports many different types of constraints. We propose specially designed energy potentials that can be solved efficiently using an alternating optimization approach. Inspired by continuum mechanics, we derive a set of continuum-based potentials that can be efficiently incorporated within our solver. We demonstrate the generality and robustness of our approach in many different applications ranging from the simulation of solids, cloths, and shells, to example-based simulation. Comparisons to Newton-based and Position Based Dynamics solvers highlight the benefits of our formulation.

[1]  F. Hollenberg Bending , 2018, Seeing and Touching Structural Concepts.

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  Eiki Yamaguchi Finite Element Method , 2014 .

[4]  Wilmot Li,et al.  Dynamic Sprites , 2013, MIG.

[5]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[6]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[7]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[8]  James F. O'Brien,et al.  Updated sparse cholesky factors for corotational elastodynamics , 2012, TOGS.

[9]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[10]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.

[11]  Takeo Igarashi,et al.  Real-time example-based elastic deformation , 2012, SCA '12.

[12]  Markus H. Gross,et al.  Rig-space physics , 2012, ACM Trans. Graph..

[13]  Denis Zorin,et al.  Global parametrization by incremental flattening , 2012, ACM Trans. Graph..

[14]  Eitan Grinspun,et al.  Asynchronous contact mechanics , 2012, Commun. ACM.

[15]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[16]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[17]  Huamin Wang,et al.  Multi-resolution isotropic strain limiting , 2010, ACM Trans. Graph..

[18]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[19]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[20]  Jos Stam,et al.  Nucleus: Towards a unified dynamics solver for computer graphics , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[21]  Wolfgang Straßer,et al.  Continuum‐based Strain Limiting , 2009, Comput. Graph. Forum.

[22]  Eitan Grinspun,et al.  Implicit-Explicit Variational Integration of Highly Oscillatory Problems , 2008, Multiscale Model. Simul..

[23]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[24]  Raanan Fattal,et al.  Efficient simulation of inextensible cloth , 2007, ACM Trans. Graph..

[25]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, ACM Trans. Graph..

[26]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[27]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[28]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[29]  Eitan Grinspun,et al.  A quadratic bending model for inextensible surfaces , 2006, SGP '06.

[30]  Stephen P. Boyd,et al.  Convex Optimization , 2004, IEEE Transactions on Automatic Control.

[31]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[32]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[33]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[34]  Mathieu Desbrun,et al.  Interactive Animation of Structured Deformable Objects , 1999, Graphics Interface.

[35]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[36]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[37]  Erik Kaestner,et al.  Finite Element Method Linear Static And Dynamic Finite Element Analysis , 2016 .

[38]  Miguel A. Otaduy,et al.  Position-based Methods for the Simulation of Solid Objects in Computer Graphics , 2013, Eurographics.

[39]  M. A. Otaduy,et al.  Anisotropic Strain Limiting , 2013 .

[40]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[41]  Dimitris N. Metaxas,et al.  Cubic shells , 2007, SCA '07.

[42]  R. Fedkiw,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Simulation of Clothing with Folds and Wrinkles , 2022 .

[43]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[44]  Jonathan Su,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Energy Conservation for the Simulation of Deformable Bodies , 2022 .