Polar coding for noisy write-once memories

We consider the noisy write-once memory (WOM) model to capture the behavior of data-storage devices such as flash memories. The noisy WOM is an asymmetric channel model with non-causal state information at the encoder. We show that a nesting of non-linear polar codes achieves the corresponding Gelfand-Pinsker bound with polynomial complexity.

[1]  Anxiao Jiang,et al.  Rewriting Codes for Joint Information Storage in Flash Memories , 2010, IEEE Transactions on Information Theory.

[2]  Gérard D. Cohen,et al.  Error-correcting WOM-codes , 1991, IEEE Trans. Inf. Theory.

[3]  Ronen Shaltiel,et al.  Invertible Zero-Error Dispersers and Defective Memory with Stuck-At Errors , 2012, APPROX-RANDOM.

[4]  David Burshtein,et al.  Polar write once memory codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[5]  Michael Langberg,et al.  Joint rewriting and error correction in write-once memories , 2013, 2013 IEEE International Symposium on Information Theory.

[6]  Chris Heegard,et al.  On the capacity of permanent memory , 1985, IEEE Trans. Inf. Theory.

[7]  Junya Honda,et al.  Polar Coding Without Alphabet Extension for Asymmetric Models , 2013, IEEE Transactions on Information Theory.

[8]  Rüdiger L. Urbanke,et al.  Polar Codes are Optimal for Lossy Source Coding , 2009, IEEE Transactions on Information Theory.

[9]  Amir Shpilka,et al.  Capacity-Achieving Multiwrite WOM Codes , 2012, IEEE Transactions on Information Theory.

[10]  Adi Shamir,et al.  How to Reuse a "Write-Once" Memory , 1982, Inf. Control..

[11]  Paul H. Siegel,et al.  Multiple Error-Correcting WOM-Codes , 2010, IEEE Transactions on Information Theory.

[12]  Rüdiger L. Urbanke,et al.  Achieving Marton’s Region for Broadcast Channels Using Polar Codes , 2014, IEEE Transactions on Information Theory.

[13]  Michael Gastpar,et al.  Polar Codes for Broadcast Channels , 2013, IEEE Transactions on Information Theory.