Options for Prognostics Methods: A review of data-driven and physics-based prognostics

Condition-based maintenance (CBM) is a cost effective maintenance strategy, in which maintenance schedules are predicted based on the results provided from diagnostics and prognostics. Although there are several reviews on diagnostics methods and CBM, a relatively small number of reviews on prognostics are available. Moreover, most of them either provide a simple comparison of different prognostics methods or focus on algorithms rather than interpreting the algorithms in the context of prognostics. The goal of this paper is to provide a practical review of prognostics methods so that beginners in prognostics can select appropriate methods for their field of applications in terms of implementation and prognostics performance. To achieve this goal, this paper introduces not only various prognostics algorithms, but also their attributes, pros and cons using simple examples.

[1]  D. An,et al.  In-Situ Monitoring and Prediction of Progressive Joint Wear Using Bayesian Statistics , 2010 .

[2]  Fabio Tozeto Ramos,et al.  A Sparse Covariance Function for Exact Gaussian Process Inference in Large Datasets , 2009, IJCAI.

[3]  Leonardo Franco,et al.  Neural Network Architecture Selection: Can Function Complexity Help? , 2009, Neural Processing Letters.

[4]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[5]  Joo-Ho Choi,et al.  Efficient reliability analysis based on Bayesian framework under input variable and metamodel uncertainties , 2012 .

[6]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[7]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[8]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[9]  Jonathan A. DeCastro,et al.  Exact Nonlinear Filtering and Prediction in Process Model-Based Prognostics , 2009 .

[10]  Raphael T. Haftka,et al.  Using a Simple Crack Growth Model in Predicting Remaining Useful Life , 2012 .

[11]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[12]  B. Samanta,et al.  ARTIFICIAL NEURAL NETWORK BASED FAULT DIAGNOSTICS OF ROLLING ELEMENT BEARINGS USING TIME-DOMAIN FEATURES , 2003 .

[13]  M.H. Azarian,et al.  Failure prognostics of multilayer ceramic capacitors in temperature-humidity-bias conditions , 2008, 2008 International Conference on Prognostics and Health Management.

[14]  Jui-Fang Chang,et al.  PARTICLE SWARM OPTIMIZATION BASED ON BACK PROPAGATION NETWORK FORECASTING EXCHANGE RATES , 2011 .

[15]  Antoine Grall,et al.  A condition-based maintenance policy for stochastically deteriorating systems , 2002, Reliab. Eng. Syst. Saf..

[16]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[17]  Michael G. Pecht,et al.  A fusion prognostics method for remaining useful life prediction of electronic products , 2009, 2009 IEEE International Conference on Automation Science and Engineering.

[18]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[19]  Nam H. Kim,et al.  Identification of correlated damage parameters under noise and bias using Bayesian inference , 2011 .

[20]  Carlo Di Bello,et al.  Analysis of an associative memory neural network for pattern identification in gene expression data , 2001, BIOKDD.

[21]  M. D. Pandey J.M. van Noortwijk Gamma process model for time-dependent structural reliability analysis , 2004 .

[22]  E. Watanabe,et al.  Bridge Maintenance, Safety, Management and Cost , 2004 .

[23]  Mikael Bodén,et al.  A guide to recurrent neural networks and backpropagation , 2001 .

[24]  Xuefei Guan,et al.  Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison , 2009 .

[25]  G.A. Rovithakis,et al.  A hybrid neural network/genetic algorithm approach to optimizing feature extraction for signal classification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Lei Xu,et al.  Health management based on fusion prognostics for avionics systems , 2011 .

[27]  Ashok N. Srivastava,et al.  Detection and Prognostics on Low-Dimensional Systems , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[28]  É MikaelBoden A guide to recurrent neural networks and backpropagation , 2001 .

[29]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[30]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[31]  Panagiota Spyridonos,et al.  Probabilistic neural network analysis of quantitative nuclear features in predicting the risk of cancer recurrence at different follow-up times , 2003, 3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the.

[32]  A. Chattopadhyay,et al.  Gaussian Process Time Series Model for Life Prognosis of Metallic Structures , 2009 .

[33]  Victor Giurgiutiu,et al.  Current issues in vibration-based fault diagnostics and prognostics , 2002, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[34]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[35]  Weicheng Cui,et al.  An engineering model of fatigue crack growth under variable amplitude loading , 2008 .

[36]  A. Gelfand,et al.  On Markov Chain Monte Carlo Acceleration , 1994 .

[37]  Hongxing Li,et al.  Fuzzy Neural Network Theory and Application , 2004, Series in Machine Perception and Artificial Intelligence.

[38]  R. D. Veaux,et al.  Prediction intervals for neural networks via nonlinear regression , 1998 .

[39]  Ashok Srivastava,et al.  Stable and Efficient Gaussian Process Calculations , 2009, J. Mach. Learn. Res..

[40]  A. Krogh What are artificial neural networks? , 2008, Nature Biotechnology.

[41]  Wee Ser,et al.  Probabilistic neural-network structure determination for pattern classification , 2000, IEEE Trans. Neural Networks Learn. Syst..

[42]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[43]  Raphael T. Haftka,et al.  Reducing Uncertainty in Damage Growth Properties by Structural Health Monitoring , 2009 .

[44]  Jamal Ahmad Dargham,et al.  Finding the number of hidden neurons for an MLP neural network using coarse to fine search technique , 2010, 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010).

[45]  Daming Lin,et al.  A review on machinery diagnostics and prognostics implementing condition-based maintenance , 2006 .

[46]  Jay Lee,et al.  A review on prognostics and health monitoring of Li-ion battery , 2011 .

[47]  Jeong-Soo Park,et al.  Sequential Monte Carlo filters for abruptly changing state estimation , 2011 .

[48]  ScienceDirect Mechanical systems and signal processing , 1987 .

[49]  G. Vachtsevanos,et al.  Reasoning about uncertainty in prognosis: a confidence prediction neural network approach , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[50]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[51]  Joo-Ho Choi,et al.  A Comparison Study of Methods for Parameter Estimation in the Physics-based Prognostics , 2012, Annual Conference of the PHM Society.

[52]  Bo-Suk Yang,et al.  Data-driven approach to machine condition prognosis using least square regression tree , 2009 .

[53]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[54]  Kishan G. Mehrotra,et al.  Forecasting the behavior of multivariate time series using neural networks , 1992, Neural Networks.

[55]  George J. Vachtsevanos,et al.  A Particle Filtering Approach for On-Line Failure Prognosis in a Planetary Carrier Plate , 2007, Int. J. Fuzzy Log. Intell. Syst..

[56]  Shih-Wei Lin,et al.  Optimization of Back-Propagation Network Using Simulated Annealing Approach , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[57]  David He,et al.  Gear Health Threshold Setting Based On a Probability of False Alarm , 2011 .

[58]  Nathan Intrator,et al.  Optimal ensemble averaging of neural networks , 1997 .

[59]  T. Higuchi Monte carlo filter using the genetic algorithm operators , 1997 .

[60]  Qiang Miao,et al.  Prognostics and health monitoring for lithium-ion battery , 2011, Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics.

[61]  Yongming Liu,et al.  Statistical validation of simulation models , 2006 .

[62]  Bhaskar Saha,et al.  An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries , 2010 .

[63]  Christopher K. I. Williams Computing with Infinite Networks , 1996, NIPS.

[64]  Darryll J. Pines,et al.  A review of vibration-based techniques for helicopter transmission diagnostics , 2005 .

[65]  H. Sorenson,et al.  Bayesian Parameter Estimation , 2006, Statistical Inference for Engineers and Data Scientists.

[66]  Alexander J. Smola,et al.  Sparse Greedy Gaussian Process Regression , 2000, NIPS.

[67]  Girish Kumar Singh,et al.  Induction machine drive condition monitoring and diagnostic research—a survey , 2003 .

[68]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[69]  K. F. Martin,et al.  A review by discussion of condition monitoring and fault diagnosis in machine tools , 1994 .

[70]  Bart L. M. Happel,et al.  Design and evolution of modular neural network architectures , 1994, Neural Networks.

[71]  Lyle H. Ungar,et al.  A NEURAL NETWORK ARCHITECTURE THAT COMPUTES ITS OWN RELIABILITY , 1992 .

[72]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[73]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[74]  Yu Peng,et al.  Data-driven prognostics for lithium-ion battery based on Gaussian Process Regression , 2012, Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing).

[75]  Robert X. Gao,et al.  Mechanical Systems and Signal Processing Approximate Entropy as a Diagnostic Tool for Machine Health Monitoring , 2006 .

[76]  D. S. T. Raubenheimer Condition-based Maintenance — Where to Next? , 1989 .

[77]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[78]  C. Lee Giles,et al.  What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation , 1998 .

[79]  D. Mackay,et al.  Introduction to Gaussian processes , 1998 .

[80]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[81]  T. Schmitz,et al.  In situ monitoring and prediction of progressive joint wear using Bayesian statistics , 2011 .

[82]  George Chryssolouris,et al.  Confidence interval prediction for neural network models , 1996, IEEE Trans. Neural Networks.

[83]  Enrico Zio,et al.  A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system , 2010, Reliab. Eng. Syst. Saf..

[84]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[85]  A. P. Dawid,et al.  Regression and Classification Using Gaussian Process Priors , 2009 .

[86]  Yichuang Sun,et al.  Wavelet neural network approach for fault diagnosis of analogue circuits , 2004 .

[87]  Shawki A. Abouel-seoud,et al.  Robust Prognostics Concept for Gearbox with Artificially Induced Gear Crack Utilizing Acoustic Emission , 2011 .

[88]  Daniel Svozil,et al.  Introduction to multi-layer feed-forward neural networks , 1997 .

[89]  Christina Willhauck,et al.  Mixed Gaussian process and state-space approach for fatigue crack growth prediction , 2007 .

[90]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[91]  G. Storvik Particle filters in state space models with the presence of unknown static parameters YYYY No org found YYY , 2000 .

[92]  S. Rahman Reliability Engineering and System Safety , 2011 .

[93]  John W. Auer,et al.  Linear algebra with applications , 1996 .

[94]  R. Sridharan,et al.  A hybrid neural network–genetic algorithm approach for permutation flow shop scheduling , 2010 .

[95]  Nazri Mohd Nawi,et al.  An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks , 2008 .

[96]  Mark J. Schervish,et al.  Nonstationary Covariance Functions for Gaussian Process Regression , 2003, NIPS.

[97]  Gautam Biswas,et al.  Annual Conference of the Prognostics and Health Management Society , 2011 Deriving Bayesian Classifiers from Flight Data to Enhance Aircraft Diagnosis , 2011 .

[98]  Richard C.M. Yam,et al.  Intelligent Predictive Decision Support System for Condition-Based Maintenance , 2001 .

[99]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[100]  Amine Bermak,et al.  Gaussian process for nonstationary time series prediction , 2004, Comput. Stat. Data Anal..

[101]  Dumitru Ostafe Neural Network Hidden Layer Number Determination Using Pattern Recognition Techniques , 2005 .

[102]  Bin Zhang,et al.  Application of Blind Deconvolution Denoising in Failure Prognosis , 2009, IEEE Transactions on Instrumentation and Measurement.

[103]  Marek Krawczuk,et al.  Improvement of damage detection methods based on experimental modal parameters , 2011 .

[104]  Howard R. Waters,et al.  Gamma Processes and Finite Time Survival Probabilities , 1993, ASTIN Bulletin.

[105]  K. Goebel,et al.  Multiple damage progression paths in model-based prognostics , 2011, 2011 Aerospace Conference.

[106]  Pablo M. Granitto,et al.  A Learning Algorithm For Neural Network Ensembles , 2001, Inteligencia Artif..

[107]  Joo-Ho Choi,et al.  Improved MCMC Method for Parameter Estimation Based on Marginal Probability Density Function , 2011 .

[108]  Donghua Zhou,et al.  Remaining useful life estimation - A review on the statistical data driven approaches , 2011, Eur. J. Oper. Res..

[109]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[110]  V. Sugumaran,et al.  Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine , 2008, Expert Syst. Appl..

[111]  Harris Drucker,et al.  Boosting and Other Ensemble Methods , 1994, Neural Computation.

[112]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[113]  Okyay Kaynak,et al.  An algorithm for fast convergence in training neural networks , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[114]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[115]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[116]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[117]  David Mackay,et al.  Gaussian Processes - A Replacement for Supervised Neural Networks? , 1997 .

[118]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[119]  Đani Juričić,et al.  Generation of diagnostic trees by means of simplified process models and machine learning , 1997 .

[120]  Wieslaw Ostachowicz,et al.  Damage localisation in plate-like structures based on PZT sensors , 2009 .

[121]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[122]  Norbert Jankowski,et al.  Survey of Neural Transfer Functions , 1999 .

[123]  Michael Pecht,et al.  A comparative review of prognostics-based reliability methods for Lithium batteries , 2011, 2011 Prognostics and System Health Managment Confernece.

[124]  Luren Yang,et al.  An Evaluation of Confidence Bound Estimation Methods for Neural Networks , 2002, Advances in Computational Intelligence and Learning.

[125]  Kai Goebel,et al.  Comparison of prognostic algorithms for estimating remaining useful life of batteries , 2009 .

[126]  M.M. Gupta,et al.  Memetic Differential Evolution Trained Neural Networks For Nonlinear System Identification , 2008, 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems.

[127]  Rafael Gouriveau A fuzzy approach of online reliability modeling and estimation , 2008 .

[128]  Jay Lee,et al.  Robust performance degradation assessment methods for enhanced rolling element bearing prognostics , 2003, Adv. Eng. Informatics.

[129]  Robert A. Jacobs,et al.  Methods For Combining Experts' Probability Assessments , 1995, Neural Computation.

[130]  Martin Veidt,et al.  Pattern recognition of guided waves for damage evaluation in bars , 2009, Pattern Recognit. Lett..

[131]  Sankaran Mahadevan,et al.  Validation and error estimation of computational models , 2006, Reliab. Eng. Syst. Saf..

[132]  Radford M. Neal Regression and Classification Using Gaussian Process Priors , 2009 .

[133]  Ting-wen Xing,et al.  Particle filter for state and parameter estimation in passive ranging , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[134]  Abhinav Saxena,et al.  - 1-A COMPARISON OF THREE DATA-DRIVEN TECHNIQUES FOR PROGNOSTICS , 2008 .

[135]  Moshe Sipper,et al.  Evolving artificial neural networks with FINCH , 2013, GECCO '13 Companion.

[136]  Michigan.,et al.  Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.

[137]  J. Leo van Hemmen,et al.  Accelerating backpropagation through dynamic self-adaptation , 1996, Neural Networks.