Computational Complexity of Outer-Independent Total and Total Roman Domination Numbers in Trees

An outer-independent total dominating set (OITDS) of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is a set <inline-formula> <tex-math notation="LaTeX">$D$ </tex-math></inline-formula> of vertices of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> such that every vertex of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> has a neighbor in <inline-formula> <tex-math notation="LaTeX">$D$ </tex-math></inline-formula>, and the set <inline-formula> <tex-math notation="LaTeX">$V(G)\setminus D$ </tex-math></inline-formula> is independent. The outer-independent total domination number of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, denoted by <inline-formula> <tex-math notation="LaTeX">$\gamma _{oit}(G)$ </tex-math></inline-formula>, is the minimum cardinality of an OITDS of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>. An outer-independent total Roman dominating function (OITRDF) on a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is a function <inline-formula> <tex-math notation="LaTeX">$f: V(G) \rightarrow \{0, 1, 2\}$ </tex-math></inline-formula> satisfying the conditions that every vertex <inline-formula> <tex-math notation="LaTeX">$u$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$f(u)=0$ </tex-math></inline-formula> is adjacent to at least one vertex <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$f(v)=2$ </tex-math></inline-formula>, every vertex <inline-formula> <tex-math notation="LaTeX">$x$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$f(x)\geq 1$ </tex-math></inline-formula> is adjacent to at least one vertex <inline-formula> <tex-math notation="LaTeX">$y$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$f(y)\geq 1$ </tex-math></inline-formula>, and any two different vertices <inline-formula> <tex-math notation="LaTeX">$a,b$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$f(a)=f(b)=0$ </tex-math></inline-formula> are not adjacent. The minimum weight <inline-formula> <tex-math notation="LaTeX">$\omega (f) =\sum _{v\in V(G)}f(v)$ </tex-math></inline-formula> of any OITRDF <inline-formula> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is the outer-independent total Roman domination number of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, denoted by <inline-formula> <tex-math notation="LaTeX">$\gamma _{oitR}(G)$ </tex-math></inline-formula>. A graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is called an outer-independent total Roman graph (OIT-Roman graph) if <inline-formula> <tex-math notation="LaTeX">$\gamma _{oitR}(G)=2\gamma _{oit}(G)$ </tex-math></inline-formula>. In this paper, we propose dynamic programming algorithms to compute the outer-independent total domination number and the outer-independent total Roman domination number of a tree, respectively. Moreover, we characterize all OIT-Roman graphs and give a linear time algorithm for recognizing an OIT-Roman graph.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Michael A. Henning,et al.  Defending the Roman Empire--A new strategy , 2003, Discret. Math..

[3]  Dorota Kuziak,et al.  Outer-independent total Roman domination in graphs , 2019, Discret. Appl. Math..

[4]  Marcin Krzywkowski A lower bound on the total outer-independent domination number of a tree , 2011 .

[5]  Seyed Mahmoud Sheikholeslami,et al.  Global Roman Domination in Trees , 2015, Graphs Comb..

[6]  Simone Dantas,et al.  Strong equality of Roman and weak Roman domination in trees , 2016, Discret. Appl. Math..

[7]  Sandi Klavzar,et al.  On the signed Roman k-domination: Complexity and thin torus graphs , 2017, Discret. Appl. Math..

[8]  Vladimir Samodivkin,et al.  Total Roman domination in graphs , 2016 .

[9]  Erin W. Chambers,et al.  Extremal Problems for Roman Domination , 2009, SIAM J. Discret. Math..

[10]  Ismael González Yero,et al.  On Computational and Combinatorial Properties of the Total Co-independent Domination Number of Graphs , 2019, Comput. J..

[11]  Teresa W. Haynes,et al.  LOWER BOUNDS ON THE ROMAN AND INDEPENDENT ROMAN DOMINATION NUMBERS , 2016 .

[12]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[13]  Vladimir Samodivkin,et al.  Outer independent Roman dominating functions in graphs , 2017, Int. J. Comput. Math..

[14]  Teresa W. Haynes,et al.  Roman {2}-domination , 2016, Discret. Appl. Math..

[15]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[16]  Marcin Krzywkowski Total outer-independent domination in graphs , 2014 .