Molecular elucidation of drug-induced abnormal assemblies of the hepatitis B virus capsid protein by solid-state NMR

[1]  F. Zoulim,et al.  Nomenclature of HBV core protein-targeting antivirals , 2022, Nature Reviews Gastroenterology & Hepatology.

[2]  P. Su,et al.  Hepatitis B virus virion secretion is a CRM1-spike-mediated late event , 2022, Journal of biomedical science.

[3]  B. Meier,et al.  Fast Magic‐Angle‐Spinning NMR Reveals the Evasive Hepatitis B Virus Capsid C‐Terminal Domain , 2022, Angewandte Chemie.

[4]  Stefan Seitz,et al.  Transient RNA Interactions Leave a Covalent Imprint on a Viral Capsid Protein , 2022, Journal of the American Chemical Society.

[5]  M. Hwang,et al.  CRM1-spike-mediated nuclear export of hepatitis B virus encapsidated viral RNA. , 2022, Cell reports.

[6]  B. Meier,et al.  Making the invisible visible: fast magic-angle-spinning NMR reveals the evasive hepatitis B virus capsid functional C-terminal domain , 2022 .

[7]  Jodi A. Hadden-Perilla,et al.  Experimental Characterization of the Hepatitis B Virus Capsid Dynamics by Solid-State NMR , 2022, Frontiers in Molecular Biosciences.

[8]  M. Kielpinski,et al.  An automated microfluidic platform for the screening and characterization of novel hepatitis B virus capsid assembly modulators. , 2021, Analytical methods : advancing methods and applications.

[9]  M. Nassal,et al.  The Hepatitis B Virus Nucleocapsid—Dynamic Compartment for Infectious Virus Production and New Antiviral Target , 2021, Biomedicines.

[10]  M. Jarrold,et al.  Core Protein-Directed Antivirals and Importin β Can Synergistically Disrupt Hepatitis B Virus Capsids , 2021, bioRxiv.

[11]  M. Nassal,et al.  Hepatitis B virus–host interactions and novel targets for viral cure , 2021, Current opinion in virology.

[12]  B. Böttcher,et al.  Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype , 2021, Microorganisms.

[13]  B. Meier,et al.  A pocket-factor–triggered conformational switch in the hepatitis B virus capsid , 2021, Proceedings of the National Academy of Sciences.

[14]  B. Meier,et al.  Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase , 2021, Nature Communications.

[15]  Matthias Harbers,et al.  Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology , 2021, Frontiers in Molecular Biosciences.

[16]  B. Meier,et al.  Solid-State NMR for Studying the Structure and Dynamics of Viral Assemblies , 2020, Viruses.

[17]  Jinhong Chang,et al.  Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. , 2020, Antiviral research.

[18]  A. Zlotnick,et al.  Viral structural proteins as targets for antivirals. , 2020, Current opinion in virology.

[19]  B. Meier,et al.  Sedimentation Yields Long-Term Stable Protein Samples as Shown by Solid-State NMR , 2020, Frontiers in Molecular Biosciences.

[20]  F. Zoulim,et al.  Can we cure hepatitis B virus with novel direct‐acting antivirals? , 2020, Liver international : official journal of the International Association for the Study of the Liver.

[21]  M. Nassal,et al.  Phosphorylation and Alternative Translation on Wheat Germ Cell-Free Protein Synthesis of the DHBV Large Envelope Protein , 2019, Front. Mol. Biosci..

[22]  Wataru Shinoda,et al.  Heteroaryldihydropyrimidines Alter Capsid Assembly By Adjusting the Binding Affinity and Pattern of the Hepatitis B Virus Core Protein , 2019, J. Chem. Inf. Model..

[23]  C. Jaroniec Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. , 2019, Journal of magnetic resonance.

[24]  F. Zoulim,et al.  Therapeutic strategies for hepatitis B virus infection: towards a cure , 2019, Nature Reviews Drug Discovery.

[25]  B. Meier,et al.  Combining Cell-Free Protein Synthesis and NMR Into a Tool to Study Capsid Assembly Modulation , 2019, Front. Mol. Biosci..

[26]  B. Meier,et al.  100 kHz MAS Proton-Detected NMR Spectroscopy of Hepatitis B Virus Capsids , 2019, Front. Mol. Biosci..

[27]  F. Zoulim,et al.  BAY 41-4109-mediated aggregation of assembled and misassembled HBV capsids in cells revealed by electron microscopy. , 2019, Antiviral research.

[28]  D. Liotta,et al.  Recent advances in the development of HBV capsid assembly modulators. , 2019, Current opinion in chemical biology.

[29]  D. Hoffmann,et al.  Treatment of Chronic Hepatitis B Virus Infection Using Small Molecule Modulators of Nucleocapsid Assembly: Recent Advances and Perspectives. , 2019, ACS infectious diseases.

[30]  B. Meier,et al.  The conformational changes coupling ATP hydrolysis and translocation in a bacterial DnaB helicase , 2019, Nature Communications.

[31]  Ian Graber-Stiehl The silent epidemic killing more people than HIV, malaria or TB , 2018, Nature.

[32]  B. Böttcher,et al.  Structure of Mutant Hepatitis B Core Protein Capsids with Premature Secretion Phenotype. , 2018, Journal of molecular biology.

[33]  B. Böttcher,et al.  Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure , 2018, PLoS pathogens.

[34]  R. Bartenschlager,et al.  Novel non‐heteroarylpyrimidine (HAP) capsid assembly modifiers have a different mode of action from HAPs in vitro , 2018, Antiviral research.

[35]  F. Zoulim,et al.  Novel Potent Capsid Assembly Modulators Regulate Multiple Steps of the Hepatitis B Virus Life Cycle , 2018, Antimicrobial Agents and Chemotherapy.

[36]  B. Meier,et al.  Localizing Conformational Hinges by NMR: Where Do Hepatitis B Virus Core Proteins Adapt for Capsid Assembly? , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  Jonathan K. Williams,et al.  Structure and Dynamics of Membrane Proteins from Solid-State NMR. , 2018, Annual review of biophysics.

[38]  K. Schulten,et al.  All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits , 2018, eLife.

[39]  B. Meier,et al.  Structural Studies of Self-Assembled Subviral Particles: Combining Cell-Free Expression with 110 kHz MAS NMR Spectroscopy. , 2018, Angewandte Chemie.

[40]  B. Meier,et al.  Solid-state [13C–15N] NMR resonance assignment of hepatitis B virus core protein , 2018, Biomolecular NMR Assignments.

[41]  T. Asselah,et al.  Towards HBV curative therapies , 2018, Liver international : official journal of the International Association for the Study of the Liver.

[42]  A. Zlotnick,et al.  Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids , 2018, eLife.

[43]  J. Young,et al.  Discovery of Small Molecule Therapeutics for Treatment of Chronic HBV Infection. , 2018, ACS infectious diseases.

[44]  L. Kaderali,et al.  Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses , 2017, Cell host & microbe.

[45]  S. Ricard-Blum,et al.  Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A. , 2017, Biochemistry.

[46]  Ellen Van Damme,et al.  Capsid Assembly Modulators Have a Dual Mechanism of Action in Primary Human Hepatocytes Infected with Hepatitis B Virus , 2017, Antimicrobial Agents and Chemotherapy.

[47]  N. Ranson,et al.  The HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly , 2017, Nature Microbiology.

[48]  J. Wu,et al.  Discovery and Pre-Clinical Characterization of Third-Generation 4-H Heteroaryldihydropyrimidine (HAP) Analogues as Hepatitis B Virus (HBV) Capsid Inhibitors. , 2017, Journal of medicinal chemistry.

[49]  F. García-Alcalde,et al.  Heteroaryldihydropyrimidine (HAP) and Sulfamoylbenzamide (SBA) Inhibit Hepatitis B Virus Replication by Different Molecular Mechanisms , 2017, Scientific Reports.

[50]  Albert A. Smith INFOS: spectrum fitting software for NMR analysis , 2017, Journal of Biomolecular NMR.

[51]  J. Wu,et al.  Design and Synthesis of Orally Bioavailable 4-Methyl Heteroaryldihydropyrimidine Based Hepatitis B Virus (HBV) Capsid Inhibitors. , 2016, Journal of medicinal chemistry.

[52]  A. Zlotnick,et al.  Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket , 2016, Journal of Virology.

[53]  C. Lukacs,et al.  High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein , 2015, Proceedings of the National Academy of Sciences.

[54]  Peixiang Ma,et al.  Observing the overall rocking motion of a protein in a crystal , 2015, Nature Communications.

[55]  A. Zlotnick,et al.  Core protein: A pleiotropic keystone in the HBV lifecycle. , 2015, Antiviral research.

[56]  M. Nassal HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B , 2015, Gut.

[57]  B. Habenstein,et al.  Structural heterogeneity in microcrystalline ubiquitin studied by solid‐state NMR , 2015, Protein science : a publication of the Protein Society.

[58]  A. Zlotnick,et al.  The Hepatitis B Virus Core Protein Intradimer Interface Modulates Capsid Assembly and Stability , 2014, Biochemistry.

[59]  Xuekui Yu,et al.  3.5Å cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein , 2013, PloS one.

[60]  A. Zlotnick,et al.  Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure. , 2013, Structure.

[61]  M. Williamson Using chemical shift perturbation to characterise ligand binding. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[62]  Andreas Hunkeler,et al.  A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. , 2012, Angewandte Chemie.

[63]  K. Bennell,et al.  Recent advances and perspectives , 2012 .

[64]  Tim J. Stevens,et al.  A software framework for analysing solid-state MAS NMR data , 2011, Journal of biomolecular NMR.

[65]  J. Berry Towards a cure. , 2011, Positively aware : the monthly journal of the Test Positive Aware Network.

[66]  B. Meier,et al.  Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion , 2011, Journal of biomolecular NMR.

[67]  A. Zlotnick,et al.  Trapping of hepatitis B virus capsid assembly intermediates by phenylpropenamide assembly accelerators. , 2010, ACS chemical biology.

[68]  Adam Zlotnick,et al.  A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance. , 2010, Virology.

[69]  R. Riek,et al.  Protocols for the Sequential Solid‐State NMR Spectroscopic Assignment of a Uniformly Labeled 25 kDa Protein: HET‐s(1‐227) , 2010, Chembiochem : a European journal of chemical biology.

[70]  A. Zlotnick,et al.  Full-Length Hepatitis B Virus Core Protein Packages Viral and Heterologous RNA with Similarly High Levels of Cooperativity , 2010, Journal of Virology.

[71]  B. Meier,et al.  Characterization of different water pools in solid-state NMR protein samples , 2009, Journal of biomolecular NMR.

[72]  M. Nassal Hepatitis B viruses: reverse transcription a different way. , 2008, Virus research.

[73]  Benjamin J. Wylie,et al.  Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. , 2007, The journal of physical chemistry. B.

[74]  S. Locarnini,et al.  The phenylpropenamide derivative AT-130 blocks HBV replication at the level of viral RNA packaging. , 2007, Antiviral research.

[75]  A. Zlotnick,et al.  Global Structural Changes in Hepatitis B Virus Capsids Induced by the Assembly Effector HAP1 , 2006, Journal of Virology.

[76]  S. Becker,et al.  High‐Resolution Solid‐State NMR Studies on Uniformly [13C,15N]‐Labeled Ubiquitin , 2005, Chembiochem : a European journal of chemical biology.

[77]  A. Zlotnick,et al.  A heteroaryldihydropyrimidine activates and can misdirect hepatitis B virus capsid assembly. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[79]  Geoffrey Chang,et al.  The past, present and future of cell-free protein synthesis. , 2005, Trends in biotechnology.

[80]  Kurt W Zilm,et al.  Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. , 2003, Journal of the American Chemical Society.

[81]  W. Delaney,et al.  Phenylpropenamide Derivatives AT-61 and AT-130 Inhibit Replication of Wild-Type and Lamivudine-Resistant Strains of Hepatitis B Virus In Vitro , 2002, Antimicrobial Agents and Chemotherapy.

[82]  A. Leslie,et al.  The crystal structure of the human hepatitis B virus capsid. , 1999, Molecular cell.

[83]  M. Otto,et al.  Inhibition of Human Hepatitis B Virus Replication by AT-61, a Phenylpropenamide Derivative, Alone and in Combination with (−)β-l-2′,3′-Dideoxy-3′-Thiacytidine , 1998, Antimicrobial Agents and Chemotherapy.

[84]  B. Böttcher,et al.  Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy , 1997, Nature.

[85]  M. Nassal The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly , 1992, Journal of virology.

[86]  M. Nassal,et al.  Topological analysis of the hepatitis B virus core particle by cysteine-cysteine cross-linking. , 1992, Journal of molecular biology.

[87]  M. Nassal,et al.  Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein , 1990, Journal of virology.

[88]  V. Dötsch,et al.  Membrane protein expression in cell-free systems. , 2010, Methods in molecular biology.

[89]  A. Zlotnick,et al.  The thermodynamics of virus capsid assembly. , 2009, Methods in enzymology.

[90]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.