Panel Data Parametric Frontier Technique for Measuring Total-factor Energy Efficiency: Application to Japanese Regions

Using the stochastic frontier analysis (SFA) model, we estimate total-factor energy efficiency (TFEE) scores for 47 regions across Japan during 1996–2008. We extend the cross-sectional SFA model proposed by Zhou et al. (Applied Energy, 2012) to panel data models and add environmental variables. The results provide not only the TFEE scores, in which statistical noise is taken into account, but also the determinants of inefficiency. The three SFA TFEEs are compared with a TFEE derived from data envelopment analysis (DEA). The four TFEEs are highly correlated with one another. For the inefficiency estimates, the higher the manufacturing industry share and wholesale and retail trade share, the lower the TFEE score.

[1]  Zhao Xiaoli,et al.  China's total factor energy efficiency of provincial industrial sectors , 2014 .

[2]  On the non-convergence of energy intensities: Evidence from a pair-wise econometric approach , 2010 .

[3]  Brantley Liddle Revisiting World Energy Intensity Convergence for Regional Differences , 2010 .

[4]  Asami Miketa,et al.  Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence , 2005 .

[5]  Sebastián Lozano,et al.  Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions , 2008 .

[6]  M. Patterson What is energy efficiency?: Concepts, indicators and methodological issues , 1996 .

[7]  Jin-Li Hu,et al.  Efficient energy-saving targets for APEC economies , 2007 .

[8]  P. Schmidt One-step and two-step estimation in SFA models , 2011 .

[9]  L. Hunt,et al.  Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach , 2011 .

[10]  Jin-Li Hu,et al.  Total-factor energy efficiency of regions in Japan , 2008 .

[11]  Toshiyuki Sueyoshi,et al.  DEA (Data Envelopment Analysis) assessment of operational and environmental efficiencies on Japanese regional industries , 2014 .

[12]  H. D. Groot,et al.  Sectoral Energy- and Labour-Productivity Convergence , 2004 .

[13]  G. Battese,et al.  A model for technical inefficiency effects in a stochastic frontier production function for panel data , 1995 .

[14]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[15]  Timothy Coelli,et al.  An Introduction to Efficiency and Productivity Analysis , 1997 .

[16]  Ernst Worrell,et al.  Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 , 2012 .

[17]  B. W. Ang,et al.  Measuring economy-wide energy efficiency performance: A parametric frontier approach , 2012 .

[18]  Vlado Vivoda,et al.  Japan’s energy security predicament post-Fukushima , 2012 .

[19]  Boqiang Lin,et al.  Technology gap and China's regional energy efficiency: A parametric metafrontier approach , 2013 .

[20]  Harold O. Fried,et al.  The Measurement of Productive Efficiency and Productivity Growth , 2008 .

[21]  W. Greene Fixed and Random Effects in Stochastic Frontier Models , 2002 .

[22]  G. Battese,et al.  A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies , 2004 .

[23]  Tim Coelli,et al.  A Guide to Frontier version 4. 1: A Computer Program for Stochastic Frontier Production and Cost Fu , 1996 .

[24]  Angeliki N. Menegaki,et al.  Accounting for unobserved management in renewable energy & growth , 2013 .

[25]  R. Goel,et al.  Global CO2 efficiency: Country-wise estimates using a stochastic cost frontier , 2012 .

[26]  William H. Greene,et al.  Reconsidering heterogeneity in panel data estimators of the stochastic frontier model , 2005 .

[27]  Adnan Sözen,et al.  Comparison of Turkey's performance of greenhouse gas emissions and local/regional pollutants with EU countries , 2009 .

[28]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[29]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[30]  Guillermo Iglesias,et al.  Measurement of productive efficiency with frontier methods: A case study for wind farms , 2010 .

[31]  Ole Bent Olesen,et al.  Target and technical efficiency in DEA: controlling for environmental characteristics , 2009 .

[32]  Kankana Mukherjee,et al.  Energy use efficiency in U.S. manufacturing: A nonparametric analysis , 2008 .

[33]  Jesus Ramos-Martin,et al.  Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina , 2011 .

[34]  Jin-Li Hu,et al.  Industry-level Total-factor Energy Efficiency in Developed Countries , 2011 .

[35]  A. Heshmati,et al.  DEA, DFA and SFA: A comparison , 1996 .

[36]  Jin-Li Hu,et al.  Total-factor energy efficiency of regions in China , 2006 .

[37]  Franz C. Palm,et al.  Wald Criteria for Jointly Testing Equality and Inequality , 1986 .

[38]  Jin-Li Hu,et al.  Total-factor Energy Efficiency for Regions in Taiwan , 2012 .

[39]  Satoshi Honma,et al.  Total-factor Energy Efficiency for Sectors in Japan , 2013 .

[40]  G. Battese,et al.  Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India , 1992 .

[41]  David I. Stern,et al.  Modeling international trends in energy efficiency , 2012 .

[42]  Lars J Nilsson,et al.  Energy intensity trends in 31 industrial and developing countries 1950–1988 , 1993 .

[43]  H. O. Fried,et al.  Efficiency and productivity , 2008 .