On linear balancing sets

Let n be an even positive integer and F be the field GF(2). A word in F<sup>n</sup> is called balanced if its Hamming weight is n=2. A subset C ⊆ F<sup>n</sup> is called a balancing set if for every word y ∈ F<sup>n</sup> there is a word x ∈ C such that y + x is balanced. It is shown that most linear subspaces of F<sup>n</sup> of dimension slightly larger than 3/2 log<inf>2</inf> n are balancing sets. An application of linear balancing sets is presented for designing efficient error-correcting coding schemes in which the codewords are balanced.

[1]  T. Cover,et al.  Rate Distortion Theory , 2001 .

[2]  Gérard D. Cohen,et al.  A nonconstructive upper bound on covering radius , 1983, IEEE Trans. Inf. Theory.

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  B. Marcus Constrained Systems and Coding for Recording Channels, in Handbook of Coding Theory, v. Finite-state Modulation Codes for Data Storage, Ieee , 2000 .

[5]  T. J. Goblick,et al.  Coding for a discrete information source with a distortion measure , 1963 .

[6]  Dominique de Caen,et al.  A lower bound on the probability of a union , 1997, Discret. Math..

[7]  Erozan M. Kurtas Advanced Error Control Techniques for Data Storage Systems , 2005 .

[8]  A. McLoughlin,et al.  The complexity of computing the covering radius of a code , 1984, IEEE Trans. Inf. Theory.

[9]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[10]  Philippe Piret,et al.  Do most binary linear codes achieve the Goblick bound on the covering radius? , 1986, IEEE Trans. Inf. Theory.

[11]  Paul Siegel,et al.  Codes for Mass Data Storage Systems (Second Edition) (K. H. Schouhamer Immink; 2004) [Book review] , 2006, IEEE Transactions on Information Theory.

[12]  Donald E. Knuth,et al.  Efficient balanced codes , 1986, IEEE Trans. Inf. Theory.

[13]  Schouhamer Immink,et al.  Codes for mass data storage systems , 2004 .

[14]  Nicolas Sendrier,et al.  Encoding information into constant weight words , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[15]  Noga Alon,et al.  Balancing sets of vectors , 1988, IEEE Trans. Inf. Theory.

[16]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .