Buckling and vibration analysis of isotropic and laminated plates by radial basis functions

Abstract This paper addresses the buckling and vibration analysis of isotropic and laminated plates by a first-order shear deformation theory. The numerical approach is based on collocation with radial basis functions. The model allows the analysis of arbitrary boundary conditions and irregular geometries. It is shown that the present method, based on a first-order shear deformation theory produces highly accurate natural frequencies and modes of vibration, as well as critical loads and modes.

[1]  António J.M. Ferreira MATLAB Codes for Finite Element Analysis: Solids and Structures , 2008 .

[2]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[3]  C.M.C. Roque,et al.  Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method , 2003 .

[4]  J. N. Reddy,et al.  Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory , 1986 .

[5]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[6]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[7]  K. M. Liew,et al.  Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates , 2004 .

[8]  K. M. Liew,et al.  Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations , 1997 .

[9]  J. N. Reddy,et al.  BUCKLING OF SYMMETRICALLY LAMINATED COMPOSITE PLATES USING THE ELEMENT-FREE GALERKIN METHOD , 2002 .

[10]  Ernest Hinton,et al.  Numerical methods and software for dynamic analysis of plates and shells , 1988 .

[11]  Yang Xiang,et al.  Buckling of thick skew plates , 1993 .

[12]  K. M. Liew,et al.  Differential quadrature method for Mindlin plates on Winkler foundations , 1996 .

[13]  Kwok Fai Cheung,et al.  Multiquadric Solution for Shallow Water Equations , 1999 .

[14]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[15]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[16]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[17]  J. Reddy,et al.  Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory , 1985 .

[18]  K. M. Liew,et al.  Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method , 2004 .

[19]  Liviu Librescu,et al.  Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. II - Buckling and free vibration , 1988 .

[20]  Tarun Kant,et al.  Numerical analysis of thick plates , 1982 .

[21]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[22]  Differential cubature method for analysis of shear deformable rectangular plates on Pasternak foundations , 2002 .

[23]  Alavandi Bhimaraddi,et al.  Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory , 1991 .

[24]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[25]  K. M. Liew,et al.  Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method , 2003 .

[26]  António J.M. Ferreira,et al.  Thick Composite Beam Analysis Using a Global Meshless Approximation Based on Radial Basis Functions , 2003 .

[27]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[28]  V.B.C. Tan,et al.  Element free method for static and free vibration analysis of spatial thin shell structures , 2002 .

[29]  K. Liew,et al.  Buckling of rectangular mindlin plates with internal line supports , 1993 .

[30]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[31]  D. J. Dawe,et al.  Rayleigh-Ritz vibration analysis of Mindlin plates , 1980 .

[32]  António J.M. Ferreira,et al.  A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates , 2003 .

[33]  A. K. Noor,et al.  Free vibrations of multilayered composite plates. , 1973 .

[34]  Gregory E. Fasshauer,et al.  Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method , 2006 .

[35]  Ping Lin,et al.  Numerical analysis of Biot's consolidation process by radial point interpolation method , 2002 .

[36]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[37]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[38]  K. M. Liew,et al.  Bending and buckling of thick symmetric rectangular laminates using the moving least-squares differential quadrature method , 2003 .

[39]  Guirong Liu,et al.  An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape , 2003 .

[40]  Y. Hon,et al.  Multiquadric method for the numerical solution of a biphasic mixture model , 1997 .

[41]  E. Reissner,et al.  Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates , 1961 .

[42]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[43]  Qiusheng Li,et al.  Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method , 2004 .

[44]  K. Y. Dai,et al.  A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates , 2004 .