KNOW THE STAR, KNOW THE PLANET. IV. A STELLAR COMPANION TO THE HOST STAR OF THE ECCENTRIC EXOPLANET HD 8673b

HD 8673 hosts a massive exoplanet in a highly eccentric orbit (e = 0.723). Based on two epochs of speckle interferometry a previous publication identified a candidate stellar companion. We observed HD 8673 multiple times with the 10 m Keck II telescope, the 5 m Hale telescope, the 3.63 m Advanced Electro-Optical System telescope, and the 1.5 m Palomar telescope in a variety of filters with the aim of confirming and characterizing the stellar companion. We did not detect the candidate companion, which we now conclude was a false detection, but we did detect a fainter companion. We collected astrometry and photometry of the companion on six epochs in a variety of filters. The measured differential photometry enabled us to determine that the companion is an early M dwarf with a mass estimate of 0.33–0.45 M_☉. The companion has a projected separation of 10 AU, which is one of the smallest projected separations of an exoplanet host binary system. Based on the limited astrometry collected, we are able to constrain the orbit of the stellar companion to a semimajor axis of 35–60 AU, an eccentricity ≤0.5, and an inclination of 75°–85°. The stellar companion has likely strongly influenced the orbit of the exoplanet and quite possibly explains its high eccentricity.

[1]  A. Tokovinin SPECKLE INTERFEROMETRY AND ORBITS OF “FAST” VISUAL BINARIES , 2012, 1206.1882.

[2]  S. Hinkley,et al.  FRIENDS OF HOT JUPITERS. I. A RADIAL VELOCITY SEARCH FOR MASSIVE, LONG-PERIOD COMPANIONS TO CLOSE-IN GAS GIANT PLANETS , 2013, 1312.2954.

[3]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[4]  Paul D. LeVan,et al.  Sensor suite for the Advanced Electro-Optical System (AEOS) 3.6-m telescope , 1996, Optics & Photonics.

[5]  M. Mugrauer,et al.  A lucky imaging multiplicity study of exoplanet host stars , 2012, 1202.4586.

[6]  B. Mason,et al.  SPECKLE INTERFEROMETRY AT MOUNT WILSON OBSERVATORY: OBSERVATIONS OBTAINED IN 2006–2007 AND 35 NEW ORBITS , 2009 .

[7]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[8]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[9]  Ann Merchant Boesgaard,et al.  Lithium in the Hyades, the Hyades moving group, and Praesepe , 1988 .

[10]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[11]  L. Roberts,et al.  KNOW THE STAR, KNOW THE PLANET. II. SPECKLE INTERFEROMETRY OF EXOPLANET HOST STARS , 2011, 1109.4569.

[12]  Harold A. McAlister,et al.  Differential Binary Star Photometry Using the Adaptive Optics System at Starfire Optical Range , 1996 .

[13]  Matthew Holman,et al.  Long-Term Stability of Planets in Binary Systems , 1996 .

[14]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[15]  Ben R. Oppenheimer,et al.  Adaptive Optics Photometry and Astrometry of Binary Stars , 2005 .

[16]  Adam L. Kraus,et al.  MILLIONS OF MULTIPLES: DETECTING AND CHARACTERIZING CLOSE-SEPARATION BINARY SYSTEMS IN SYNOPTIC SKY SURVEYS , 2012, 1210.4550.

[17]  E. Friel,et al.  Chemical composition of open clusters. I. Fe/H from high-resolution spectroscopy. II. C/H and C/Fe in F dwarfs from high-resolution spectroscopy , 1990 .

[18]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[19]  W. Kley,et al.  Planet formation in binary stars: the case of γ Cephei , 2008, 0805.1354.

[20]  Lewis C. Roberts,et al.  Characterization of the AEOS Adaptive Optics System , 2002 .

[21]  Y. Lithwick,et al.  SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS , 2010, 1012.3475.

[22]  M. Tsantaki,et al.  Spectroscopic parameters for solar-type stars with moderate/high rotation. New parameters for 10 planet-hosts , 2014, 1407.6765.

[23]  Pravin Chordia,et al.  HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS , 2014, 1407.8179.

[24]  T. Brummelaar,et al.  Adaptive Optics Photometry and Astrometry of Binary Stars. II. A Multiplicity Survey of B Stars , 2005, 0805.3162.

[25]  Malcolm Smith,et al.  The Gemini Planet Imager: integration and status , 2012, Other Conferences.

[26]  Y. Lithwick,et al.  Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems , 2013, Proceedings of the National Academy of Sciences.

[27]  John Asher Johnson,et al.  ROBOTIC LASER ADAPTIVE OPTICS IMAGING OF 715 KEPLER EXOPLANET CANDIDATES USING ROBO-AO , 2013, 1312.4958.

[28]  O. Tamuz,et al.  The CORALIE survey for southern extra-solar planets - XV. Discovery of two eccentric planets orbiting HD 4113 and HD 156846 , 2007, 0710.5028.

[29]  G. H. Kaplan,et al.  Statistical Constraints for Astrometric Binaries with Nonlinear Motion , 2005 .

[30]  A. Hatzes,et al.  A SUB-STELLAR COMPANION AROUND THE F7 V STAR HD 8673 , 2010 .

[31]  Bernhard R. Brandl,et al.  PHARO: A Near‐Infrared Camera for the Palomar Adaptive Optics System , 2001 .

[32]  C. Baranec,et al.  PALM-3000: EXOPLANET ADAPTIVE OPTICS FOR THE 5 m HALE TELESCOPE , 2013, 1309.1216.

[33]  J. Crepp,et al.  THE TRENDS HIGH-CONTRAST IMAGING SURVEY. I. THREE BENCHMARK M DWARFS ORBITING SOLAR-TYPE STARS , 2012, 1210.3000.

[34]  D. S. Acton,et al.  First Light Adaptive Optics Images from the Keck II Telescope: A New Era of High Angular Resolution Imagery , 2000 .

[35]  C. Saffe,et al.  On the ages of exoplanet host stars , 2005, astro-ph/0510092.

[36]  G. Marcy,et al.  High-eccentricity planets from the Anglo-Australian Planet Search , 2006, astro-ph/0603335.

[37]  L. Roberts,et al.  Binary Star Differential Photometry Using the Adaptive Optics System at Mount Wilson Observatory , 2000 .