Free Terminal Time Optimal Control Problem of an HIV Model Based on a Conjugate Gradient Method
暂无分享,去创建一个
[1] H. T. Banksa,et al. Estimation and Prediction With HIV-Treatment Interruption Data , 2007 .
[2] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[3] D. Kirschner,et al. Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.
[4] Morton I. Kamien,et al. Dynamic Optimization , 2020, Natural Resource Economics.
[5] Alan S Perelson,et al. HIV-1 infection and low steady state viral loads , 2002, Bulletin of mathematical biology.
[6] G. M. Ortiz,et al. Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection , 2000, AIDS.
[7] R. Faure. Neural networks and mathematical distributions theory: periodical and almost periodical dirac firings , 1994 .
[8] M. Araki,et al. Two-Degree-of-Freedom PID Controllers , 2003 .
[9] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[10] S. Lenhart,et al. OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL , 1998 .
[11] M A Nowak,et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. , 1998, Science.
[12] José Álvarez-Ramírez,et al. Feedback Control of the chemotherapy of HIV , 2000, Int. J. Bifurc. Chaos.
[13] Jinhua Guo,et al. A new algorithm of nonlinear conjugate gradient method with strong convergence , 2008 .
[14] D. Kirschner,et al. Predicting differential responses to structured treatment interruptions during HAART , 2004, Bulletin of mathematical biology.
[15] Julianna Lisziewicz,et al. Structured treatment interruptions in HIV/AIDS therapy. , 2002, Microbes and infection.
[16] R. Paredes,et al. Structured treatment interruption in chronically HIV-1 infected patients after long-term viral suppression , 2000, AIDS.
[17] Jorge Nocedal,et al. Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..
[18] B. Adams,et al. HIV dynamics: Modeling, data analysis, and optimal treatment protocols , 2005 .
[19] Dahlard L. Lukes,et al. Differential Equations: Classical to Controlled , 2012 .
[20] L. Bittner. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko, The Mathematical Theory of Optimal Processes. VIII + 360 S. New York/London 1962. John Wiley & Sons. Preis 90/– , 1963 .
[21] M. Nowak,et al. Specific therapy regimes could lead to long-term immunological control of HIV. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[22] Guanrong Chen,et al. Feedback control of a biodynamical model of HIV-1 , 2001, IEEE Transactions on Biomedical Engineering.
[23] S. Mitter,et al. The conjugate gradient method for optimal control problems , 1967 .
[24] Chung Choo Chung,et al. Optimal Scheduling of Drug Treatment for HIV Infection : Continuous Dose Control and Receding Horizon Control , 2003 .
[25] W. Fleming,et al. Deterministic and Stochastic Optimal Control , 1975 .
[26] Harvey Thomas Banks,et al. A state‐dependent Riccati equation‐based estimator approach for HIV feedback control , 2006 .
[27] B. Adams,et al. Dynamic multidrug therapies for hiv: optimal and sti control approaches. , 2004, Mathematical biosciences and engineering : MBE.
[28] Duan Li,et al. On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.
[29] Shuhua Hu,et al. Modelling HIV immune response and validation with clinical data , 2008, Journal of biological dynamics.