Tetratricopeptide repeat domain 7A is a nuclear factor that modulates transcription and chromatin structure

[1]  Yawen Bai,et al.  Emerging roles of linker histones in regulating chromatin structure and function , 2017, Nature Reviews Molecular Cell Biology.

[2]  Giacomo Cavalli,et al.  Organization and function of the 3D genome , 2016, Nature Reviews Genetics.

[3]  Ian Robinson,et al.  The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes , 2016, Scientific Reports.

[4]  S. Gasser,et al.  On TADs and LADs: Spatial Control Over Gene Expression. , 2016, Trends in genetics : TIG.

[5]  Greg M. Delgoffe,et al.  Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8 T cell differentiation , 2016, Nature Immunology.

[6]  J. Hayes,et al.  Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome. , 2016, Biochemistry.

[7]  C. Crane-Robinson Linker histones: History and current perspectives. , 2016, Biochimica et biophysica acta.

[8]  Howard Y. Chang,et al.  The histone chaperone CAF-1 safeguards somatic cell identity , 2015, Nature.

[9]  Y. Lau,et al.  Compound heterozygous mutations in TTC7A cause familial multiple intestinal atresias and severe combined immunodeficiency , 2015, Clinical genetics.

[10]  P. De Camilli,et al.  The leukodystrophy protein FAM126A/Hyccin regulates PI4P synthesis at the plasma membrane , 2015, Nature Cell Biology.

[11]  H. A. Cole,et al.  Novel nucleosomal particles containing core histones and linker DNA but no histone H1 , 2015, Nucleic acids research.

[12]  T. Lion,et al.  Hypomorphic mutation in TTC7A causes combined immunodeficiency with mild structural intestinal defects. , 2015, Blood.

[13]  E. Haddad,et al.  Multiple Intestinal Atresia With Combined Immune Deficiency Related to TTC7A Defect Is a Multiorgan Pathology , 2014, Medicine.

[14]  F. Rieux-Laucat,et al.  Immune deficiency-related enteropathy-lymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. , 2014, The Journal of allergy and clinical immunology.

[15]  M. Fessing Gene regulation at a distance: higher-order chromatin folding and the coordinated control of gene transcription at the epidermal differentiation complex locus. , 2014, The Journal of investigative dermatology.

[16]  V. Aggarwal,et al.  Tetratricopeptide Repeat Domain 7A (TTC7A) Mutation in a Newborn with Multiple Intestinal Atresia and Combined Immunodeficiency , 2014, Journal of Clinical Immunology.

[17]  G. Almouzni,et al.  Histone chaperones: assisting histone traffic and nucleosome dynamics. , 2014, Annual review of biochemistry.

[18]  M. Beck,et al.  Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits , 2014, Nature Structural &Molecular Biology.

[19]  E. Schadt,et al.  Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. , 2014, Gastroenterology.

[20]  A. Fischer,et al.  TTC7A mutations disrupt intestinal epithelial apicobasal polarity. , 2014, The Journal of clinical investigation.

[21]  F. Uhlmann,et al.  Condensin aids sister chromatid decatenation by topoisomerase II , 2013, Nucleic acids research.

[22]  Michael P. Snyder,et al.  Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias. , 2013, The Journal of allergy and clinical immunology.

[23]  D. Spector,et al.  Chromatin organization and transcriptional regulation. , 2013, Current opinion in genetics & development.

[24]  J. Dekker,et al.  The hierarchy of the 3D genome. , 2013, Molecular cell.

[25]  P. Awadalla,et al.  Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia , 2013, Journal of Medical Genetics.

[26]  S. Henikoff,et al.  Epigenome characterization at single base-pair resolution , 2011, Proceedings of the National Academy of Sciences.

[27]  J. Diffley,et al.  Positive Supercoiling of Mitotic DNA Drives Decatenation by Topoisomerase II in Eukaryotes , 2011, Science.

[28]  L. Hodgson,et al.  Dynamics of the Rho-family small GTPases in actin regulation and motility , 2011, Cell adhesion & migration.

[29]  J. Ihle,et al.  Chromatin condensation via the condensin II complex is required for peripheral T‐cell quiescence , 2011, The EMBO journal.

[30]  Nicholas A. Kent,et al.  Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing , 2010, Nucleic acids research.

[31]  Toshiyuki Obata,et al.  The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. , 2009, Developmental cell.

[32]  I. Okkelman,et al.  Nuclear transport of protein TTC4 depends on the cell cycle , 2009, Cell and Tissue Research.

[33]  S. Emr,et al.  Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3 , 2008, The Journal of cell biology.

[34]  G. Shivashankar,et al.  Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. , 2008, Biophysical journal.

[35]  D. Bennett,et al.  The Human TPR Protein TTC4 Is a Putative Hsp90 Co-Chaperone Which Interacts with CDC6 and Shows Alterations in Transformed Cells , 2008, PloS one.

[36]  A. Stein,et al.  Histone H1 Depletion in Mammals Alters Global Chromatin Structure but Causes Specific Changes in Gene Regulation , 2005, Cell.

[37]  Lynne Regan,et al.  TPR proteins: the versatile helix. , 2003, Trends in biochemical sciences.

[38]  A. F. Neuwald,et al.  Differential Contributions of Condensin I and Condensin II to Mitotic Chromosome Architecture in Vertebrate Cells , 2003, Cell.

[39]  Craig L. Peterson,et al.  Chromatin Higher Order Folding--Wrapping up Transcription , 2002, Science.

[40]  S. Wellman,et al.  Histone h1(0) and its carboxyl-terminal domain bind in the major groove of DNA. , 2002, Biochemistry.

[41]  Luis Moroder,et al.  Structure of TPR Domain–Peptide Complexes Critical Elements in the Assembly of the Hsp70–Hsp90 Multichaperone Machine , 2000, Cell.

[42]  M. Carlson,et al.  The N-Terminal TPR Region Is the Functional Domain of SSN6, a Nuclear Phosphoprotein of Saccharomyces cerevisiae , 1990, Molecular and cellular biology.

[43]  F. Watanabe Cooperative interaction of histone H1 with DNA. , 1986, Nucleic acids research.

[44]  P. Stockley,et al.  A nucleosome‐like particle containing an octamer of the arginine‐rich histones H3 and H4 , 1979, FEBS letters.

[45]  A Klug,et al.  Solenoidal model for superstructure in chromatin. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Zaret,et al.  H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. , 2016, Trends in genetics : TIG.

[47]  A. Probst,et al.  Heterochromatin at mouse pericentromeres: a model for de novo heterochromatin formation and duplication during replication. , 2010, Cold Spring Harbor symposia on quantitative biology.

[48]  C. Peterson,et al.  Molecular biology. Chromatin higher order folding--wrapping up transcription. , 2002, Science.

[49]  S. Hergeth,et al.  The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle , 2015, EMBO reports.