High Order Residual Distribution Scheme for the RANS Equations

In this work we describe the use of the Residual Distribution schemes applied to the discretization of conservation laws. In particular, emphasis is put on the construction of a third order accurate scheme. We first recall the properties of a Residual Distribution scheme and we show how to construct a high order scheme for advection problems. Furthermore, we show how to speed up the convergence of the implicit scheme to the steady solution by the means of the Jacobian-free technique. We then extend the scheme to the case of advection-diffusion problems. In particular, we propose a new approach in which the residuals of the advection and diffusion terms are distributed together to get high order accuracy. Due to the continuous approximation of the solution, the gradients of the variables are reconstructed at the nodes and then interpolated on the elements. The numerical scheme is used to discretize the advection-diffusion scalar problem and the compressible Navier-Stokes equations.

[1]  T. Chan,et al.  Nonlinearly Preconditioned Krylov Subspace Methods for Discrete Newton Algorithms , 1984 .

[2]  Antony Jameson,et al.  Lower-upper implicit schemes with multiple grids for the Euler equations , 1987 .

[3]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[4]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[5]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[6]  H. Paillere,et al.  MULTIDIMENSIONAL UPWIND RESIDUAL DISTRIBUTION SCHEMES FOR THE CONVECTION-DIFFUSION EQUATION , 1996 .

[7]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[8]  Moulay D. Tidriri,et al.  Preconditioning Techniques for the Newton-Krylov Solution of Compressible Flows , 1997 .

[9]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[10]  Rainald Löhner,et al.  A fast, matrix-free implicit method for compressible flows on unstructured grids , 1998 .

[11]  Laszlo Fuchs,et al.  Compact Third-Order Multidimensional Upwind Scheme for Navier–Stokes Simulations , 2002 .

[12]  O. C. Zienkiewicz,et al.  Discontinuous Galerkin methods: theory, computation and application (lecture notes in computational science and engineering) , by B. Cockburn, G. E. Karniadakis and C.‐W. Shu (eds), Springer, Berlin, 2000. ISBN 3‐540‐66787‐3, GB£51.50. , 2002 .

[13]  Rémi Abgrall,et al.  High Order Fluctuation Schemes on Triangular Meshes , 2003, J. Sci. Comput..

[14]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[15]  N. Marques,et al.  Comparison of matrix‐free acceleration techniques in compressible Navier–Stokes calculations , 2004 .

[16]  Mohamed Mezine,et al.  Construction of second-order accurate monotone and stable residual distribution schemes for steady problems R , 2004 .

[17]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[18]  Rémi Abgrall,et al.  Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems , 2006, J. Comput. Phys..

[19]  Hiroaki Nishikawa,et al.  A first-order system approach for diffusion equation. I: Second-order residual-distribution schemes , 2007, J. Comput. Phys..

[20]  Matthew Hubbard,et al.  A framework for discontinuous fluctuation distribution , 2008 .

[21]  Rémi Abgrall,et al.  Development of Residual Distribution Schemes for theDiscontinuous GalerkinMethod: The ScalarCase with Linear Elements , 2009 .

[22]  Hiroaki Nishikawa,et al.  On High-Order Fluctuation-Splitting Schemes for Navier-Stokes Equations , 2009 .

[23]  Hiroaki Nishikawa,et al.  Beyond Interface Gradient: A General Principle for Constructing Diffusion Schemes , 2010 .

[24]  Ralf Hartmann,et al.  Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations , 2010, J. Comput. Phys..

[25]  Hiroaki Nishikawa,et al.  A first-order system approach for diffusion equation. II: Unification of advection and diffusion , 2010, J. Comput. Phys..

[26]  Inria Bordeaux Sud-Ouest A Residual Distribution Method Using Discontinuous Elements for the Computation of Possibly Non Smooth Flows , 2010 .

[27]  Hiroaki Nishikawa Robust and accurate viscous discretization via upwind scheme – I: Basic principle , 2011 .

[28]  Rémi Abgrall,et al.  Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes , 2011, J. Comput. Phys..

[29]  Herman Deconinck,et al.  Third order residual distribution schemes for the Navier-Stokes equations , 2011, J. Comput. Phys..

[30]  Rémi Abgrall,et al.  Numerical approximation of parabolic problems by means of residual distribution schemes , 2011 .

[31]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[32]  Rémi Abgrall,et al.  High order residual distribution scheme for Navier-Stokes equations. , 2011 .

[33]  Cecile Dobrzynski,et al.  MMG3D: User Guide , 2012 .

[34]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .