Context-aware Argumentative Relation Mining

Context is crucial for identifying argumentative relations in text, but many argument mining methods make little use of contextual features. This paper presents contextaware argumentative relation mining that uses features extracted from writing topics as well as from windows of context sentences. Experiments on student essays demonstrate that the proposed features improve predictive performance in two argumentative relation classification tasks.

[1]  Lejian Liao,et al.  Shell Miner: Mining Organizational Phrases in Argumentative Texts in Social Media , 2014, 2014 IEEE International Conference on Data Mining.

[2]  Serena Villata,et al.  Combining Textual Entailment and Argumentation Theory for Supporting Online Debates Interactions , 2012, ACL.

[3]  Simone Teufel,et al.  Unsupervised learning of rhetorical structure with un-topic models , 2014, COLING.

[4]  Manfred Stede,et al.  Joint prediction in MST-style discourse parsing for argumentation mining , 2015, EMNLP.

[5]  Iryna Gurevych,et al.  Annotating Argument Components and Relations in Persuasive Essays , 2014, COLING.

[6]  Diane J. Litman,et al.  Extracting Argument and Domain Words for Identifying Argument Components in Texts , 2015, ArgMining@HLT-NAACL.

[7]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[8]  Paolo Torroni,et al.  Context-Independent Claim Detection for Argument Mining , 2015, IJCAI.

[9]  Diane J. Litman,et al.  Improving Argument Mining in Student Essays by Learning and Exploiting Argument Indicators versus Essay Topics , 2016, FLAIRS Conference.

[10]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[11]  Claire Cardie,et al.  Identifying Appropriate Support for Propositions in Online User Comments , 2014, ArgMining@ACL.

[12]  Jan Snajder,et al.  Back up your Stance: Recognizing Arguments in Online Discussions , 2014, ArgMining@ACL.

[13]  Serena Villata,et al.  From Discourse Analysis to Argumentation Schemes and Back: Relations and Differences , 2013, CLIMA.

[14]  Man Lan,et al.  A Refined End-to-End Discourse Parser , 2015, CoNLL Shared Task.

[15]  Livio Robaldo,et al.  The Penn Discourse TreeBank 2.0. , 2008, LREC.

[16]  Manfred Stede,et al.  From Argument Diagrams to Argumentation Mining in Texts: A Survey , 2013, Int. J. Cogn. Informatics Nat. Intell..

[17]  Marc Moens,et al.  Articles Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status , 2002, CL.

[18]  Daniel Marcu,et al.  Finding the WRITE Stuff: Automatic Identification of Discourse Structure in Student Essays , 2003, IEEE Intell. Syst..

[19]  Jacob Eisenstein,et al.  Representation Learning for Text-level Discourse Parsing , 2014, ACL.

[20]  Andreas Peldszus,et al.  Towards segment-based recognition of argumentation structure in short texts , 2014, ArgMining@ACL.

[21]  Nitin Madnani,et al.  Identifying High-Level Organizational Elements in Argumentative Discourse , 2012, NAACL.

[22]  Chris Reed,et al.  Argumentation Schemes , 2008 .

[23]  Daniel Marcu,et al.  Building a Discourse-Tagged Corpus in the Framework of Rhetorical Structure Theory , 2001, SIGDIAL Workshop.

[24]  Owen Rambow,et al.  Identifying Justifications in Written Dialogs by Classifying Text as Argumentative , 2011, Int. J. Semantic Comput..

[25]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[26]  Iryna Gurevych,et al.  Argumentation Mining in Persuasive Essays and Scientific Articles from the Discourse Structure Perspective , 2014, ArgNLP.

[27]  Alan Sergeant,et al.  Automatic Argumentation Extraction , 2013, ESWC.

[28]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[29]  Pythagoras Karampiperis,et al.  Argument extraction for supporting public policy formulation , 2013, LaTeCH@ACL.

[30]  Marie-Francine Moens,et al.  Automatic detection of arguments in legal texts , 2007, ICAIL.

[31]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[32]  Manfred Stede,et al.  Towards Detecting Counter-considerations in Text , 2015, ArgMining@HLT-NAACL.

[33]  Noam Slonim,et al.  Context Dependent Claim Detection , 2014, COLING.

[34]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[35]  Dragomir R. Radev,et al.  Identifying Non-Explicit Citing Sentences for Citation-Based Summarization. , 2010, ACL.

[36]  ˇ FilipBoltu Back up your Stance: Recognizing Arguments in Online Discussions , 2014 .