Multiresolution on the Sphere

In this paper we study some basic tools for the construction of multi-scale systems on the unit sphere. Particularly, we emphasize properties of spherical harmonics and Legendre functions. Based on these orthogonal systems we discuss in some detail the decomposition of the classical Hilbert space on the sphere into subspaces of different level. To this end we explain different bases and frames. In our examples the building blocks consist of polynomials and spherical radial basis functions.

[1]  Gabriele Steidl,et al.  Kernels of spherical harmonics and spherical frames , 1996 .

[2]  I. J. Schoenberg Positive definite functions on spheres , 1942 .

[3]  Ilona Weinreich,et al.  A Construction of C1-Wavelets on the Two-Dimensional Sphere☆ , 2001 .

[4]  W. Dahmen,et al.  Multiresolution analysis and wavelets on S2 and S3 , 1995 .

[5]  Manfred Tasche,et al.  A Unified Approach to Periodic Wavelets , 1994 .

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[8]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[9]  Hwee Huat Tan,et al.  Periodic Orthogonal Splines and Wavelets , 1995 .

[10]  P. Schröder,et al.  Spherical wavelets: Efficiently representing functions on a sphere , 2000 .

[11]  Elliott Ward Cheney,et al.  Approximation and Interpolation on Spheres , 1995 .

[12]  Joseph D. Ward,et al.  Wavelets Associated with Periodic Basis Functions , 1996 .

[13]  G. Folland Fourier analysis and its applications , 1992 .

[14]  Gabriele Steidl,et al.  Fast and stable algorithms for discrete spherical Fourier transforms , 1998 .

[15]  Hrushikesh Narhar Mhaskar,et al.  Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..

[16]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[17]  Ta-Hsin Li,et al.  Multiscale Representation and Analysis of Spherical Data by Spherical Wavelets , 1999, SIAM J. Sci. Comput..

[18]  Sankatha Prasad Singh,et al.  Approximation Theory, Wavelets and Applications , 1995 .

[19]  Bernd Fischer,et al.  Wavelets based on orthogonal polynomials , 1997, Math. Comput..

[20]  Armin Iske,et al.  Scattered Data Modelling Using Radial Basis Functions , 2002, Tutorials on Multiresolution in Geometric Modelling.

[21]  V. A. Menegatto,et al.  STRICT POSITIVE DEFINITENESS ON SPHERES , 1999 .

[22]  Hrushikesh Narhar Mhaskar,et al.  Polynomial frames on the sphere , 2000, Adv. Comput. Math..

[23]  C. Chui,et al.  Wavelets : theory, algorithms, and applications , 1994 .

[24]  Joseph D. Ward,et al.  Nonstationary Wavelets on the M-sphere for Scattered Data Send All Correspondence To , 1996 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[27]  Leon M. Hall,et al.  Special Functions , 1998 .

[28]  M. Schreiner On a new condition for strictly positive definite functions on spheres , 1997 .

[29]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[30]  Tom Lyche,et al.  A Multiresolution Tensor Spline Method for Fitting Functions on the Sphere , 2000, SIAM J. Sci. Comput..

[31]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .

[32]  A. Ron,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..