Variational Bayes for a Mixed Stochastic/Deterministic Fuzzy Filter

This study, under the variational Bayes (VB) framework, infers the parameters of a Takagi-Sugeno fuzzy filter having deterministic antecedents and stochastic consequents. The aim of this study is to take advantages of the VB framework to design fuzzy-filtering algorithms, which include an automated regularization, incorporation of statistical noise models, and model-comparison capability. The VB method can be easily applied to the linear-in-parameters models. This paper applies the VB method to the nonlinear fuzzy filters without using Taylor expansion for a linear approximation of some nonlinear function. It is assumed that the nonlinear parameters (i.e., antecedents) of the fuzzy filter are deterministic, while linear parameters are stochastic. The VB algorithm, by maximizing a strict lower bound on the data evidence, makes the approximate posterior of linear parameters as close to the true posterior as possible. The nonlinear deterministic parameters are tuned in a way to further increase the lower bound on data evidence. The VB paradigm can be used to design an algorithm that automatically selects the most-suitable fuzzy filter out of the considered finite set of fuzzy filters. This is done by fitting the observed data as a stochastic combination of the different Takagi-Sugeno fuzzy filters such that the individual filters compete with one another to model the data.

[1]  Norbert Stoll,et al.  A fuzzy system for modeling the structure-activity relationships in presence of uncertainties , 2008, 2008 IEEE International Conference on Automation Science and Engineering.

[2]  Matthias Weippert,et al.  Fuzzy Evaluation of Heart Rate Signals for Mental Stress Assessment , 2007, IEEE Transactions on Fuzzy Systems.

[3]  L. Zadeh The role of fuzzy logic in the management of uncertainty in expert systems , 1983 .

[4]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[5]  Norbert Stoll,et al.  Fuzzy Techniques for Subjective Workload-Score Modeling Under Uncertainties , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[7]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[8]  Chia-Feng Juang,et al.  TS-fuzzy system-based support vector regression , 2009, Fuzzy Sets Syst..

[9]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[10]  Rudolf Kruse,et al.  A neuro-fuzzy approach to obtain interpretable fuzzy systems for function approximation , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[11]  W. Wang,et al.  An Evolving Fuzzy Predictor for Industrial Applications , 2008, IEEE Transactions on Fuzzy Systems.

[12]  Francisco Herrera,et al.  GENERATING FUZZY RULES FROM EXAMPLES USING GENETIC ALGORITHMS , 1995 .

[13]  Norbert Stoll,et al.  Robust Adaptive Identification of Fuzzy Systems with Uncertain Data , 2004, Fuzzy Optim. Decis. Mak..

[14]  Robert Babuska,et al.  Constructing fuzzy models by product space clustering , 1997 .

[15]  Mark W. Woolrich,et al.  Variational Bayesian Inference for a Nonlinear Forward Model , 2020, IEEE Transactions on Signal Processing.

[16]  Mark W. Woolrich,et al.  Variational bayes inference of spatial mixture models for segmentation , 2006, IEEE Transactions on Medical Imaging.

[17]  Norbert Stoll,et al.  Fuzzy Filtering for an Intelligent Interpretation of Medical Data , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[18]  H. W. ENGLz Regularized Data-Driven Construction of Fuzzy Controllers , 2002 .

[19]  Chin-Teng Lin,et al.  Efficient Self-Evolving Evolutionary Learning for Neurofuzzy Inference Systems , 2008, IEEE Transactions on Fuzzy Systems.

[20]  Sangchul Won,et al.  A new approach to fuzzy modeling of nonlinear dynamic systems with noise: relevance vector learning mechanism , 2006, IEEE Transactions on Fuzzy Systems.

[21]  Dan Simon,et al.  Training fuzzy systems with the extended Kalman filter , 2002, Fuzzy Sets Syst..

[22]  T. A. Johansen,et al.  Robust identification of Takagi-Sugeno-Kang fuzzy models using regularization , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[23]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[24]  J. Liska,et al.  Complete design of fuzzy logic systems using genetic algorithms , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[25]  Norbert Stoll,et al.  Robust Solution to Fuzzy Identification Problem with Uncertain Data by Regularization , 2004, Fuzzy Optim. Decis. Mak..

[26]  Ling Wang,et al.  Fuzzy rule-based support vector regression system , 2005 .

[27]  Norbert Stoll,et al.  Fuzzy Handling of Uncertainties in Modeling the Inhibition of Glycogen Synthase Kinase-3 by Paullones , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[28]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[29]  N. Stoll,et al.  Deterministic approach to robust adaptive learning of fuzzy models , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  Xiaoou Li,et al.  Fuzzy identification using fuzzy neural networks with stable learning algorithms , 2004, IEEE Transactions on Fuzzy Systems.

[31]  Norbert Stoll,et al.  A robust design criterion for interpretable fuzzy models with uncertain data , 2006, IEEE Transactions on Fuzzy Systems.

[32]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[33]  Xia Hong,et al.  Robust neurofuzzy rule base knowledge extraction and estimation using subspace decomposition combined with regularization and D-optimality , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Kerstin Thurow,et al.  Fuzzy filtering for robust bioconcentration factor modelling , 2009, Environ. Model. Softw..

[35]  Martin Burger,et al.  Regularized data-driven construction of fuzzy controllers , 2002 .

[36]  Norbert Stoll,et al.  An energy-gain bounding approach to robust fuzzy identification , 2006, Autom..

[37]  K. Thurow,et al.  Robust fuzzy mappings for QSAR studies. , 2007, European journal of medicinal chemistry.

[38]  Ferenc Szeifert,et al.  Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[39]  Song-Shyong Chen,et al.  Robust TSK fuzzy modeling for function approximation with outliers , 2001, IEEE Trans. Fuzzy Syst..

[40]  Norbert Stoll,et al.  Robust Adaptive Fuzzy Identification of Time-Varying Processes with Uncertain Data. Handling Uncertainties in the Physical Fitness Fuzzy Approximation with Real World Medical Data: An Application , 2003, Fuzzy Optim. Decis. Mak..

[41]  Norbert Stoll,et al.  A min-max approach to fuzzy clustering, estimation, and identification , 2006, IEEE Transactions on Fuzzy Systems.

[42]  Jacek M. Leski,et al.  TSK-fuzzy modeling based on /spl epsiv/-insensitive learning , 2005, IEEE Transactions on Fuzzy Systems.

[43]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[44]  Norbert Stoll,et al.  On the Estimation of Parameters of Takagi–Sugeno Fuzzy Filters , 2009, IEEE Transactions on Fuzzy Systems.

[45]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[46]  Hisao Ishibuchi,et al.  A simple but powerful heuristic method for generating fuzzy rules from numerical data , 1997, Fuzzy Sets Syst..

[47]  Norbert Stoll,et al.  Adaptive Fuzzy Filtering in a Deterministic Setting , 2009, IEEE Transactions on Fuzzy Systems.

[48]  Dan Simon,et al.  Design and rule base reduction of a fuzzy filter for the estimation of motor currents , 2000, Int. J. Approx. Reason..

[49]  Chin-Teng Lin,et al.  Fuzzy neural network design using support vector regression for function approximation with outliers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[50]  Edwin Lughofer,et al.  FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models , 2008, IEEE Transactions on Fuzzy Systems.

[51]  Chi-Hsu Wang,et al.  Function approximation using fuzzy neural networks with robust learning algorithm , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[52]  Raúl Pérez,et al.  Completeness and consistency conditions for learning fuzzy rules , 1998, Fuzzy Sets Syst..

[53]  S Kumar,et al.  Handling uncertainties in toxicity modelling using a fuzzy filter , 2007, SAR and QSAR in environmental research.

[54]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[55]  J. J. Shann,et al.  A fuzzy neural network for rule acquiring on fuzzy control systems , 1995 .