Honing and proofing Astrophysical codes on the road to Exascale. Experiences from code modernization on many-core systems

[1]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[2]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[3]  Kwan-Liu Ma,et al.  A Scalable, Hybrid Scheme for Volume Rendering Massive Data Sets y , 2022 .

[4]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[5]  Samuel Williams,et al.  Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.

[6]  Vincenzo Antonuccio-Delogu,et al.  Active galactic nuclei activity: self-regulation from backflow , 2010 .

[7]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[8]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[9]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[10]  R. Klessen,et al.  THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS , 2012, 1209.2856.

[11]  N. Bucciantini,et al.  A fully covariant mean-field dynamo closure for numerical 3+1 resistive GRMHD , 2012, 1205.2951.

[12]  Christoph Federrath,et al.  ON THE STAR FORMATION EFFICIENCY OF TURBULENT MAGNETIZED CLOUDS , 2012, 1211.6433.

[13]  Torsten Wilde,et al.  A Case Study of Energy Aware Scheduling on SuperMUC , 2014, ISC.

[14]  N. Bucciantini,et al.  Axisymmetric equilibrium models for magnetized neutron stars in General Relativity under the Conformally Flat Condition , 2014, 1401.4308.

[15]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[16]  Frederico Pratas,et al.  Cache-aware Roofline model: Upgrading the loft , 2014, IEEE Computer Architecture Letters.

[17]  N. Bucciantini,et al.  Dynamo action in thick discs around Kerr black holes: high-order resistive GRMHD simulations , 2014 .

[18]  S. Borgani,et al.  An improved SPH scheme for cosmological simulations , 2015, 1502.07358.

[19]  Guillaume J.L. Colin de Verdière Computing element evolution towards Exascale and its impact on legacy simulation codes , 2015 .

[20]  Luca Del Zanna,et al.  Constraints on particle acceleration sites in the Crab nebula from relativistic magnetohydrodynamic simulations , 2015, 1502.06394.

[21]  Pedro Gonnet,et al.  SWIFT: Using Task-Based Parallelism, Fully Asynchronous Communication, and Graph Partition-Based Domain Decomposition for Strong Scaling on more than 100,000 Cores , 2016, PASC.

[22]  S. Landi,et al.  Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited , 2016, 1605.06331.

[23]  Luigi Iapichino,et al.  The world's largest turbulence simulations , 2016 .

[24]  Aaron Knoll,et al.  OSPRay - A CPU Ray Tracing Framework for Scientific Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[25]  Fabio Baruffa,et al.  Performance Optimisation of Smoothed Particle Hydrodynamics Algorithms for Multi/Many-Core Architectures , 2016, 2017 International Conference on High Performance Computing & Simulation (HPCS).

[26]  Jeongnim Kim,et al.  Optimization and Parallelization of B-Spline Based Orbital Evaluations in QMC on Multi/Many-Core Shared Memory Processors , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[27]  T. Quinn,et al.  Gasoline2: a modern smoothed particle hydrodynamics code , 2017 .

[28]  Luca Del Zanna,et al.  Papaloizou-Pringle instability suppression by the magnetorotational instability in relativistic accretion discs , 2017, 1707.01860.

[29]  Fuat Keceli,et al.  Global Extensible Open Power Manager: A Vehicle for HPC Community Collaboration on Co-Designed Energy Management Solutions , 2017, ISC.

[30]  N. Bucciantini,et al.  General relativistic models for rotating magnetized neutron stars in conformally flat space–time , 2017, 1705.03795.

[31]  Thomas W. Jones,et al.  WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code , 2017, 1701.07452.

[32]  Luigi Iapichino,et al.  Adaptive mesh refinement simulations of a galaxy cluster merger – I. Resolving and modelling the turbulent flow in the cluster outskirts , 2017, 1704.02922.

[33]  Daniel J. Price,et al.  Phantom: A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics , 2017, Publications of the Astronomical Society of Australia.

[34]  V. Antonuccio-Delogu,et al.  Feedback from reorienting AGN jets , 2018, Astronomy & Astrophysics.

[35]  Matteo Bugli,et al.  ECHO-3DHPC: Relativistic Accretion Disks onto Black Holes , 2018, 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP).

[36]  Qi Wu,et al.  VisIt-OSPRay: Toward an Exascale Volume Visualization System , 2018, EGPGV@EuroVis.

[37]  Thomas Ilsche,et al.  Energy Efficiency Features of the Intel Skylake-SP Processor and Their Impact on Performance , 2019, 2019 International Conference on High Performance Computing & Simulation (HPCS).

[38]  Fabio Baruffa,et al.  Speeding simulation analysis up with yt and Intel Distribution for Python , 2019, ArXiv.

[39]  Luigi Iapichino,et al.  Visualizing the world's largest turbulence simulation , 2019, ArXiv.