Stability Analysis of Polytopic Discontinuous Galerkin Approximations of the Stokes Problem with Applications to Fluid–Structure Interaction Problems

We present a stability analysis of the Discontinuous Galerkin method on polygonal and polyhedral meshes (PolyDG) for the Stokes problem. In particular, we analyze the discrete inf-sup condition for different choices of the polynomial approximation order of the velocity and pressure approximation spaces. To this aim, we employ a generalized inf-sup condition with a pressure stabilization term. We also prove a priori hp-version error estimates in suitable norms. We numerically check the behaviour of the inf-sup constant and the order of convergence with respect to the mesh configuration, the mesh-size, and the polynomial degree. Finally, as a relevant application of our analysis, we consider the PolyDG approximation for a fluid-structure interaction problem and we numerically explore the stability properties of the method.

[1]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[2]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[3]  Michael Dumbser,et al.  Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity , 2018, J. Comput. Phys..

[4]  Sebastian Grimberg,et al.  Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid‐structure interaction , 2019, International Journal for Numerical Methods in Fluids.

[5]  Andrea Toselli,et al.  Mixed hp-finite element approximations on geometric edge and boundary layer meshes in three dimensions , 2001 .

[6]  Rolf Stenberg,et al.  Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes , 1999, Numerische Mathematik.

[7]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[8]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[9]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[10]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[11]  Erik Burman,et al.  A Nitsche-based formulation for fluid-structure interactions with contact , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[12]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[13]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[14]  Yuri Bazilevs,et al.  Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method , 2020 .

[15]  Chunning Ji,et al.  Large scale simulation of red blood cell aggregation in shear flows. , 2013, Journal of biomechanics.

[16]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[17]  Seizo Tanaka,et al.  Discontinuous Galerkin Methods with Nodal and Hybrid Modal/Nodal Triangular, Quadrilateral, and Polygonal Elements for Nonlinear Shallow Water Flow , 2014 .

[18]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[19]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[20]  Ram P. Ghosh,et al.  Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid–structure interaction analysis , 2020, Biomechanics and Modeling in Mechanobiology.

[21]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..

[22]  Mats G. Larson,et al.  A Nitsche-Based Cut Finite Element Method for a Fluid--Structure Interaction Problem , 2013, 1311.2431.

[23]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[24]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[25]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[26]  Christian Vergara,et al.  Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids , 2019, Finite Elements in Analysis and Design.

[27]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[28]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[29]  Andrea Toselli,et al.  HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .

[30]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[31]  Boyce E. Griffith,et al.  Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions , 2012, International journal for numerical methods in biomedical engineering.

[32]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[33]  Paola F. Antonietti,et al.  High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes , 2018, Computer Methods in Applied Mechanics and Engineering.

[34]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[35]  I. Borazjani Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves , 2013 .

[36]  Benedikt Schott,et al.  A consistent approach for fluid‐structure‐contact interaction based on a porous flow model for rough surface contact , 2018, International Journal for Numerical Methods in Engineering.

[37]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[38]  Ramon Codina,et al.  Fluid structure interaction by means of variational multiscale reduced order models , 2020, International Journal for Numerical Methods in Engineering.

[39]  R. Stenberg,et al.  Mixed $hp$ finite element methods for problems in elasticity and Stokes flow , 1996 .

[40]  Paul Houston,et al.  hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes , 2016 .

[41]  Ramji Kamakoti,et al.  Fluid–structure interaction for aeroelastic applications , 2004 .

[42]  R. Picelli,et al.  Topology optimization of binary structures under design-dependent fluid-structure interaction loads , 2020, Structural and Multidisciplinary Optimization.

[43]  Emmanuil H. Georgoulis,et al.  hp-Version Space-Time Discontinuous Galerkin Methods for Parabolic Problems on Prismatic Meshes , 2016, SIAM J. Sci. Comput..

[44]  Michael Dumbser,et al.  Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations: Spectral analysis and computational results , 2016, Numer. Linear Algebra Appl..

[45]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[46]  Najib Bouaanani,et al.  Effects of fluid–structure interaction modeling assumptions on seismic floor acceleration demands within gravity dams , 2014 .

[47]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[48]  G. Vacca,et al.  Equilibrium analysis of an immersed rigid leaflet by the virtual element method , 2020, Mathematical Models and Methods in Applied Sciences.

[49]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[50]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[51]  Dietrich Braess,et al.  Approximation on Simplices with Respect to Weighted Sobolev Norms , 2000 .

[52]  Lucy T. Zhang Immersed finite element method for fluid-structure interactions , 2007 .

[53]  Jérôme Droniou,et al.  The Hybrid High-Order Method for Polytopal Meshes , 2020 .

[54]  S'ebastien Court,et al.  A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid , 2015, 1502.03953.

[55]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[56]  Andrea Toselli,et al.  Stabilized hp-DGFEM for Incompressible Flow , 2003 .

[57]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[58]  Daniele Boffi,et al.  A fictitious domain approach with Lagrange multiplier for fluid-structure interactions , 2015, Numerische Mathematik.

[59]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[60]  Emmanuil H. Georgoulis,et al.  hp-Version discontinuous Galerkin methods on essentially arbitrarily-shaped elements , 2019, Math. Comput..

[61]  Alfio Quarteroni,et al.  A patient-specific aortic valve model based on moving resistive immersed implicit surfaces , 2017, Biomechanics and Modeling in Mechanobiology.