The Effects of Noise on Frequency-Domain Parameter Estimation of Synchronous Machine Models

The authors present results of a study conducted to evaluate the effects of measurement noise on the estimation of machine parameters from standstill frequency response test data. Results obtained indicate that, because the test data are inherently noise-corrupted, multiple solution sets can be obtained. Moreover, some of the estimated machine parameters could be unrealistic. It is shown that the results are very sensitive to the value of armature resistance used in the data analysis. Even a 0.5% error in the value of armature resistance could result in unrealistic estimation of the machine parameters. >

[1]  J. A. Mallick,et al.  Modeling of Solid Rotor Turbogenerators Part I: Theory and Techniques , 1978, IEEE Transactions on Power Apparatus and Systems.

[2]  K. L. Nielsen,et al.  An Algorithm for Least Squares , 1947 .

[3]  Yao-nan Yu,et al.  Experimental Determination of Exact Equivalent Circuit Parameters of Synchronous Machines , 1971 .

[4]  R. C. Beck,et al.  Time-domain identification of synchronous machine parameters from simple standstill tests , 1990 .

[5]  A. Keyhani,et al.  Maximum Likelihood Estimation of Solid-Rotor Synchronous Machine Parameters from SSFR Test Data , 1989, IEEE Power Engineering Review.

[6]  M.V.K. Chari,et al.  Improvement in accuracy of prediction of electrical machine constants and generator models for subsynchronous resonance conditions. Volume 1. Three-dimensional electromagnetic field analysis of electrical machinery. Final report , 1984 .

[7]  J. C. Balda,et al.  Measurement of Synchronous Machine Parameters by a Modified Frequency Response Method???Part I: Theory , 1987, IEEE Power Engineering Review.

[8]  J. S. Edmonds,et al.  Trajectory sensitivity based identification of synchronous generator and excitation system parameters , 1988 .

[9]  J. A. Mallick,et al.  Modeling of Solid Rotor Turbogenerators Part II: Example of Model Derivation and Use in Digital Simulation , 1978, IEEE Transactions on Power Apparatus and Systems.

[10]  R. G. Harley,et al.  Measurement of Synchronous Machine Parameters by a Modified Frequency Response Method???Part II: Measured Results , 1987, IEEE Power Engineering Review.

[11]  M.E. Coultes,et al.  Synchronous Machine Models by Standstill Frequency Response Tests , 1981, IEEE Transactions on Power Apparatus and Systems.

[12]  J. H. Fish,et al.  Saturation Functions for Synchronous Generators from Finite Elements , 1987, IEEE Power Engineering Review.

[13]  L. Hannett,et al.  Determination of Synchronous Machine Electrical Characteristics by Test , 1983, IEEE Transactions on Power Apparatus and Systems.

[14]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[15]  P. Kundur,et al.  Adaptation and Validation of Turbogenerator Model Parameters Through On-Line Frequency Response Measurements , 1981, IEEE Transactions on Power Apparatus and Systems.

[16]  P. L. Dandeno,et al.  Development of Detailed Turbogenerator Equivalent Circuits from Standstill Frequency Response Measurements , 1981 .

[17]  A. Keyhani,et al.  Observers for Tracking of Synchronous Machine Parameters and Detection of Incipient Faults , 1986, IEEE Power Engineering Review.

[18]  P. Kundur,et al.  Validation of Turbogenerator Stability Models by Comparisons with Power System Tests , 1981, IEEE Transactions on Power Apparatus and Systems.

[19]  I. M. Canay EXTENDED SYNCHRONOUS-MACHINE MODEL FOR THE CALCULATION OF TRANSIENT PROCESSES AND STABILITY , 1977 .

[20]  P.L. Dandeno Current Usage & Suggested Practices in Power System Stability Simulations for Synchronous Machines , 1986, IEEE Transactions on Energy Conversion.