Pseudomonas aeruginosa Cell Membrane Protein Expression from Phenotypically Diverse Cystic Fibrosis Isolates Demonstrates Host-Specific Adaptations.

Pseudomonas aeruginosa is a Gram-negative, nosocomial, highly adaptable opportunistic pathogen especially prevalent in immuno-compromised cystic fibrosis (CF) patients. The bacterial cell surface proteins are important contributors to virulence, yet the membrane subproteomes of phenotypically diverse P. aeruginosa strains are poorly characterized. We carried out mass spectrometry (MS)-based proteome analysis of the membrane proteins of three novel P. aeruginosa strains isolated from the sputum of CF patients and compared protein expression to the widely used laboratory strain, PAO1. Microbes were grown in planktonic growth condition using minimal M9 media, and a defined synthetic lung nutrient mimicking medium (SCFM) limited passaging. Two-dimensional LC-MS/MS using iTRAQ labeling enabled quantitative comparisons among 3171 and 2442 proteins from the minimal M9 medium and in the SCFM, respectively. The CF isolates showed marked differences in membrane protein expression in comparison with PAO1 including up-regulation of drug resistance proteins (MexY, MexB, MexC) and down-regulation of chemotaxis and aerotaxis proteins (PA1561, PctA, PctB) and motility and adhesion proteins (FliK, FlgE, FliD, PilJ). Phenotypic analysis using adhesion, motility, and drug susceptibility assays confirmed the proteomics findings. These results provide evidence of host-specific microevolution of P. aeruginosa in the CF lung and shed light on the adaptation strategies used by CF pathogens.

[1]  M. Wolfgang,et al.  The Alternative Sigma Factor AlgT Represses Pseudomonas aeruginosa Flagellum Biosynthesis by Inhibiting Expression of fleQ , 2005, Journal of bacteriology.

[2]  Samuel I. Miller,et al.  Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes. , 2014, American journal of respiratory and critical care medicine.

[3]  G. O’Toole,et al.  Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion , 2011, PLoS pathogens.

[4]  K. Hardie,et al.  A Novel Virulence Strategy for Pseudomonas aeruginosa Mediated by an Autotransporter with Arginine-Specific Aminopeptidase Activity , 2012, PLoS pathogens.

[5]  P. Thornley,et al.  Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. , 1996, The Journal of antimicrobial chemotherapy.

[6]  Carmen Z. Cantemir-Stone,et al.  The mannose-6-phosphate analogue, PXS64, inhibits fibrosis via TGF-β1 pathway in human lung fibroblasts. , 2015, Immunology letters.

[7]  S. Chevalier,et al.  Full Virulence of Pseudomonas aeruginosa Requires OprF , 2010, Infection and Immunity.

[8]  Alain Filloux,et al.  A novel type II secretion system in Pseudomonas aeruginosa , 2002, Molecular microbiology.

[9]  B. Wretlind,et al.  Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[10]  Jie Liu,et al.  Correction to "Combining Protein Ratio p-Values as a Pragmatic Approach to the Analysis of Multirun iTRAQ Experiments". , 2015, Journal of proteome research.

[11]  Ana Segura,et al.  Mechanisms of solvent tolerance in gram-negative bacteria. , 2002, Annual review of microbiology.

[12]  Robert E W Hancock,et al.  Function of pseudomonas porins in uptake and efflux. , 2002, Annual review of microbiology.

[13]  H. Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2009, Drugs.

[14]  D. Schomburg,et al.  How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. , 2010, Environmental microbiology.

[15]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[16]  N. Cianciotto Type II secretion: a protein secretion system for all seasons. , 2005, Trends in microbiology.

[17]  A. Chakrabarty,et al.  Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide , 1995, Journal of Industrial Microbiology.

[18]  M. Son,et al.  In Vivo Evidence of Pseudomonas aeruginosa Nutrient Acquisition and Pathogenesis in the Lungs of Cystic Fibrosis Patients , 2007, Infection and Immunity.

[19]  S. Cordwell,et al.  Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas aeruginosa , 2002, Proteomics.

[20]  M. Whiteley,et al.  Nutritional Cues Control Pseudomonas aeruginosa Multicellular Behavior in Cystic Fibrosis Sputum , 2007, Journal of bacteriology.

[21]  Ian T. Paulsen,et al.  TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels , 2006, Nucleic Acids Res..

[22]  Dana Pascovici,et al.  Coverage and consistency: bioinformatics aspects of the analysis of multirun iTRAQ experiments with wheat leaves. , 2013, Journal of proteome research.

[23]  Jürgen Cox,et al.  1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data , 2012, BMC Bioinformatics.

[24]  Raymond Lo,et al.  Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes , 2010, Nucleic Acids Res..

[25]  R. Ramphal,et al.  FleQ, the Major Flagellar Gene Regulator in Pseudomonas aeruginosa, Binds to Enhancer Sites Located Either Upstream or Atypically Downstream of the RpoN Binding Site , 2002, Journal of bacteriology.

[26]  M. Molloy Isolation of bacterial cell membranes proteins using carbonate extraction. , 2008, Methods in molecular biology.

[27]  Jian Yang,et al.  VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors , 2011, Nucleic Acids Res..

[28]  M. Larsen,et al.  Complementing genomics with proteomics: The membrane subproteome of Pseudomonas aeruginosa PAO1 , 2000, Electrophoresis.

[29]  J. Costerton,et al.  Can laboratory reference strains mirror "real-world" pathogenesis? , 2005, Trends in microbiology.

[30]  Y. Couté,et al.  Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane , 2013, Proteomics.

[31]  D. Ohman,et al.  Evidence for Two Promoters Internal to the Alginate Biosynthesis Operon in Pseudomonas aeruginosa , 2012, Current Microbiology.

[32]  B. Berwin,et al.  Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa , 2013, Infection and Immunity.

[33]  Lin Fang,et al.  WEGO: a web tool for plotting GO annotations , 2006, Nucleic Acids Res..

[34]  I. Paulsen,et al.  Proteomics of hosts and pathogens in cystic fibrosis , 2015, Proteomics. Clinical applications.

[35]  Sean L Seymour,et al.  The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra*S , 2007, Molecular & Cellular Proteomics.

[36]  B. Ryall,et al.  Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections. , 2013, Environmental microbiology.

[37]  Richard D. Smith,et al.  Global analysis of the membrane subproteome of Pseudomonas aeruginosa using liquid chromatography-tandem mass spectrometry. , 2004, Journal of proteome research.

[38]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[39]  J. Pagés,et al.  Pseudomonas aeruginosa alkaline protease: evidence for secretion genes and study of secretion mechanism , 1991, Journal of bacteriology.

[40]  F. Purschke,et al.  Flexible Survival Strategies of Pseudomonas aeruginosa in Biofilms Result in Increased Fitness Compared with Candida albicans * , 2012, Molecular & Cellular Proteomics.

[41]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[42]  A. Imberty,et al.  Role of LecA and LecB Lectins in Pseudomonas aeruginosa-Induced Lung Injury and Effect of Carbohydrate Ligands , 2009, Infection and Immunity.

[43]  N. Packer,et al.  Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype. , 2015, Glycobiology.

[44]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[45]  P. Visca,et al.  Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen , 2009, Proteomics.

[46]  G. O’Toole,et al.  Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression , 2010, Infection and Immunity.

[47]  G. O’Toole,et al.  Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment. , 2014, American journal of physiology. Lung cellular and molecular physiology.

[48]  T. Tsuji,et al.  SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in Gram-negative bacteria , 2008, Bioinformation.

[49]  A. Rodloff,et al.  Development of resistance in Pseudomonas aeruginosa obtained from patients with cystic fibrosis at different times. , 2003, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[50]  M. Kobayashi,et al.  A close correlation between improvement of organic solvent tolerance levels and alteration of resistance toward low levels of multiple antibiotics in Escherichia coli. , 1995, Bioscience, biotechnology, and biochemistry.

[51]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[52]  S. Cordwell,et al.  Proteomics of bacterial pathogens: Pseudomonas aeruginosa infections in cystic fibrosis – A case study , 2010, Proteomics. Clinical applications.

[53]  Anders Folkesson,et al.  Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective , 2012, Nature Reviews Microbiology.

[54]  Chad R. Weisbrod,et al.  Dynamic Proteome Response of Pseudomonas aeruginosa to Tobramycin Antibiotic Treatment* , 2015, Molecular & Cellular Proteomics.

[55]  I. Paulsen,et al.  Genetically and Phenotypically Distinct Pseudomonas aeruginosa Cystic Fibrosis Isolates Share a Core Proteomic Signature , 2015, PloS one.

[56]  I. Mitov,et al.  Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections , 2011, Annals of Microbiology.

[57]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[58]  Dana Pascovici,et al.  PloGO: Plotting gene ontology annotation and abundance in multi‐condition proteomics experiments , 2012, Proteomics.